How to call a structured language that cannot loop or a functional language that cannot return

339 views Asked by At

I created a special-purpose "programming language" that deliberately (by design) cannot evaluate the same piece of code twice (ie. it cannot loop). It essentially is made to describe a flowchart-like process where each element in the flowchart is a conditional that performs a different test on the same set of data (without being able to modify it). Branches can split and merge, but never in a circular fashion, ie. the flowchart cannot loop back onto itself. When arriving at the end of a branch, the current state is returned and the program exits.

When written down, a typical program superficially resembles a program in a purely functional language, except that no form of recursion is allowed and functions can never return anything; the only way to exit a function is to call another function, or to invoke a general exit statement that returns the current state. A similar effect could also be achieved by taking a structured programming language and removing all loop statements, or by taking an "unstructured" programming language and forbidding any goto or jmp statement that goes backwards in the code.

Now my question is: is there a concise and accurate way to describe such a language? I don't have any formal CS background and it is difficult for me to understand articles about automata theory and formal language theory, so I'm a bit at a loss. I know my language is not Turing complete, and through great pain, I managed to assure myself that my language probably can be classified as a "regular language" (ie. a language that can be evaluated by a read-only Turing machine), but is there a more specific term?

Bonus points if the term is intuitively understandable to an audience that is well-versed in general programming concepts but doesn't have a formal CS background. Also bonus points if there is a specific kind of machine or automaton that evaluates such a language. Oh yeah, keep in mind that we're not evaluating a stream of data - every element has (read-only) access to the full set of input data. :)

2

There are 2 answers

1
Aubrey da Cunha On BEST ANSWER

I know this question is somewhat old, but for posterity, the phrase you are looking for is "decision tree". See http://en.wikipedia.org/wiki/Decision_tree_model for details. I believe this captures exactly what you have done and has a pretty descriptive name to boot!

1
templatetypedef On

I believe that your language is sufficiently powerful to encode precisely the star-free languages. This is a subset of that regular languages in which no expression contains a Kleene star. In other words, it's the language of the empty string, the null set, and individual characters that is closed under concatenation and disjunction. This is equivalent to the set of languages accepted by DFAs that don't have any directed cycles in them.

I can attempt a proof of this here given your description of your language, though I'm not sure it will work precisely correctly because I don't have full access to your language. The assumptions I'm making are as follows:

  1. No functions ever return. Once a function is called, it will never return control flow to the caller.
  2. All calls are resolved statically (that is, you can look at the source code and construct a graph of each function and the set of functions it calls). In other words, there aren't any function pointers.
  3. The call graph is acyclic; for any functions A and B, then exactly one of the following holds: A transitively calls B, B transitively calls A, or neither A nor B transitively call one another.
  4. More generally, the control flow graph is acyclic. Once an expression evaluates, it never evaluates again. This allows us to generalize the above so that instead of thinking of functions calling other functions, we can think of the program as a series of statements that all call one another as a DAG.
  5. Your input is a string where each letter is scanned once and only once, and in the order in which it's given (which seems reasonable given the fact that you're trying to model flowcharts).

Given these assumptions, here's a proof that your programs accept a language iff that language is star-free.

To prove that if there's a star-free language, there's a program in your language that accepts it, begin by constructing the minimum-state DFA for that language. Star-free languages are loop-free and scan the input exactly once, and so it should be easy to build a program in your language from the DFA. In particular, given a state s with a set of transitions to other states based on the next symbol of input, you can write a function that looks at the next character of input and then calls the function encoding the state being transitioned to. Since the DFA has no directed cycles, the function calls have no directed cycles, and so each statement will be executed exactly once. We now have that (∀ R. is a star-free language → ∃ a program in your language that accepts it).

To prove the reverse direction of implication, we essentially reverse this construction and create an ε-NFA with no cycles that corresponds to your program. Doing a subset construction on this NFA to reduce it to a DFA will not introduce any cycles, and so you'll have a star-free language. The construction is as follows: for each statement si in your program, create a state qi with a transition to each of the states corresponding to the other statements in your program that are one hop away from that statement. The transitions to those states will be labeled with the symbols of input consumed making each of the decisions, or ε if the transition occurs without consuming any input. This shows that (∀ programs P in your language, &exists; a star-free language R the accepts just the strings accepted by your language).

Taken together, this shows that your programs have identically the power of the star-free languages.

Of course, the assumptions I made on what your programs can do might be too limited. You might have random-access to the input sequence, which I think can be handled with a modification of the above construction. If you can potentially have cycles in execution, then this whole construction breaks. But, even if I'm wrong, I still had a lot of fun thinking about this, and thank you for an enjoyable evening. :-)

Hope this helps!