I created a special-purpose "programming language" that deliberately (by design) cannot evaluate the same piece of code twice (ie. it cannot loop). It essentially is made to describe a flowchart-like process where each element in the flowchart is a conditional that performs a different test on the same set of data (without being able to modify it). Branches can split and merge, but never in a circular fashion, ie. the flowchart cannot loop back onto itself. When arriving at the end of a branch, the current state is returned and the program exits.
When written down, a typical program superficially resembles a program in a purely functional language, except that no form of recursion is allowed and functions can never return anything; the only way to exit a function is to call another function, or to invoke a general exit statement that returns the current state. A similar effect could also be achieved by taking a structured programming language and removing all loop statements, or by taking an "unstructured" programming language and forbidding any goto or jmp statement that goes backwards in the code.
Now my question is: is there a concise and accurate way to describe such a language? I don't have any formal CS background and it is difficult for me to understand articles about automata theory and formal language theory, so I'm a bit at a loss. I know my language is not Turing complete, and through great pain, I managed to assure myself that my language probably can be classified as a "regular language" (ie. a language that can be evaluated by a read-only Turing machine), but is there a more specific term?
Bonus points if the term is intuitively understandable to an audience that is well-versed in general programming concepts but doesn't have a formal CS background. Also bonus points if there is a specific kind of machine or automaton that evaluates such a language. Oh yeah, keep in mind that we're not evaluating a stream of data - every element has (read-only) access to the full set of input data. :)
I know this question is somewhat old, but for posterity, the phrase you are looking for is "decision tree". See http://en.wikipedia.org/wiki/Decision_tree_model for details. I believe this captures exactly what you have done and has a pretty descriptive name to boot!