I have a native C++ method, from external unchangable DLL, that expects a std::vector as a argument with 2 native objects. (for example sake, it's an image library returning width/height of a 2 images)
I would like the native objects in the std::vector to be referenced in my own wrapped MyManagedImageObj.
Somehow the std::vector seems to copy values and has no way to add pointers (correct?); so after calling the NativeMethod; I need to copy the properties (width/height) back again to MyManagedImageObj.
I thought about first declaring the std::vec and getting the pointer of the results and put that in MyManagedImageObj as a pointer. But if I understand it correctly std::vector will clean that native memory up once out of scope. (my c++ experience is 1 week; c# long time)
Is there a better way to do this without reassigning the properties one by one?
Ej
The code looks like this:
//create managed object that wraps also native pointer.
MyManagedImageObj^ obj1 = gcnew MyManagedImageObj();
MyManagedImageObj^ obj2 = gcnew MyManagedImageObj();
//keep list of result
List<MyManagedImageObj^>^ resultList;
resultList->Add(obj1);
resultList->Add(obj2);
//call to native method. Dereference pointers of native wrapped objects... not working?
std::vector<DLLNativeImageObj> nativeImageVec { *obj1->GetInstance(), *obj2->GetInstance() };
bool result = otherNativePtr->NativeMethod(nativeImageVec);
//we still need copy it over results now to 'our' managed objects.
int i = 0;
for (DLLNativeImageObj c : nativeImageVec)
{
resultList[i]->ImageHeight = c.imageHeight;
resultList[i]->ImageWidth = c.imageWidth;
++i;
}
The MyManagedImageObj class looks like this:
//MyManagedImageObj.h
public ref class MyManagedImageObj
{
protected:
DLLNativeImageObj* m_Instance;
public:
MyManagedImageObj(DLLNativeImageObj* instance)
: m_Instance(instance)
{
};
~MyManagedImageObj() //destructor will be called whenever we do 'delete'
{
if (m_Instance != nullptr)
{
delete m_Instance;
}
}
!MyManagedImageObj() //finalizer, called by the garbage collector when it's destroys the wrapper object. So safety check to dispose unmanaged item.
{
if (m_Instance != nullptr)
{
delete m_Instance;
}
}
DLLNativeImageObj* GetInstance() //return the pointer to the unmanaged object
{
return m_Instance;
}
property uint32_t ImageWidth
{
public:
uint32_t get()
{
return m_Instance->imageWidth;
}
public:
void set(uint32_t value)
{
m_Instance->imageWidth = value;
}
}
property uint32_t ImageHeight
{
public:
uint32_t get()
{
return m_Instance->imageHeight;
}
public:
void set(uint32_t value)
{
m_Instance->imageHeight = value;
}
}
};
//MyManagedImageObj.cpp
MyManagedImageObj::MyManagedImageObj(new DLLNativeImageObj())
{
// new keyword important: it returns a pointer to the location and does not get deleted when out of scope. Manual delete is required.
}