How to calculate length of loading vector and distance from given point in R?

111 views Asked by At

I've run a standard RDA analysis for my data. I am struggling to find a formal analysis for some important insights (i.e. I need a way to report these statements in my paper)

Consider the red x lying in between Shrub and WaterCont at ~(-0.5,-0.5). I want to estimate if Shru or WaterCont explains more of the variation. How can I calculate:

  1. The length of each loading vector (WaterCont and Shrub)

  2. The distance or red, x from each loading to find out which contributed to more variation?

    # Load mite species abundance data
     data("mite")
     # Load environmental data
     data("mite.env")
    
     # Hellinger transform the community data
     mite.spe.hel <- decostand(mite, method = "hellinger")
    
     # Standardize quantitative environmental data
     mite.env$SubsDens <- decostand(mite.env$SubsDens, method = "standardize")
     mite.env$WatrCont <- decostand(mite.env$WatrCont, method = "standardize")
    
     mite.spe.rda.signif <- rda(mite.spe.hel ~ WatrCont + Shrub +
         Substrate + Topo + SubsDens, data = mite.env)
    
     # Find the adjusted R2 of the model with the retained env
     # variables
     RsquareAdj(mite.spe.rda.signif)$adj.r.squared
    
     anova.cca(mite.spe.rda.signif, step = 1000, by = "term")
    
     # Scaling 2
     ordiplot(mite.spe.rda.signif, scaling = 2, main = "Mite RDA - Scaling 2")
    
    # Load mite species abundance data
     data("mite")
     # Load environmental data
     data("mite.env")
    
     # Hellinger transform the community data
     mite.spe.hel <- decostand(mite, method = "hellinger")
    
     # Standardize quantitative environmental data
     mite.env$SubsDens <- decostand(mite.env$SubsDens, method = "standardize")
     mite.env$WatrCont <- decostand(mite.env$WatrCont, method = "standardize")
    
     mite.spe.rda.signif <- rda(mite.spe.hel ~ WatrCont + Shrub +
         Substrate + Topo + SubsDens, data = mite.env)
    
     # Find the adjusted R2 of the model with the retained env
     # variables
     RsquareAdj(mite.spe.rda.signif)$adj.r.squared
    
     anova.cca(mite.spe.rda.signif, step = 1000, by = "term")
    
     # Scaling 2
     ordiplot(mite.spe.rda.signif, scaling = 2, main = "Mite RDA - Scaling 2")
    

enter image description here

0

There are 0 answers