how to build a generator and discriminator for a DCGAN with images of size 256x256

469 views Asked by At

I have the following generators and discriminators for a DCGAN with images of size 128x128, it works excellent.

However, I would like to use the same code to generate images with a size of 256x256, but I cannot build the generators and discriminators.

# direccion del directorio de entrenamiento
dataroot = "./dataset 128x128"

# Number of workers for dataloader
workers = 6

# Batch size during training
batch_size = 1

# Spatial size of training images. All images will be resized to this
#   size using a transformer.
image_size = 128

# Number of channels in the training images. For color images this is 3
nc = 3

# Size of z latent vector (i.e. size of generator input)
nz = 100

# Size of feature maps in generator
ngf = 32

# Size of feature maps in discriminator
ndf = 32

# Number of training epochs
num_epochs = 20

# Learning rate for optimizers
lr = 0.0002
# Beta1 hyperparam for Adam optimizers
beta1 = 0.5

# Number of GPUs available. Use 0 for CPU mode.
ngpu = 2

print("Dataset done")

# Generator Code

class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d(     nz, ngf * 16, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 16),
            nn.ReLU(True),
            # state size. (ngf*16) x 4 x 4
            nn.ConvTranspose2d(ngf * 16, ngf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 8 x 8
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 16 x 16 
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 32 x 32
            nn.ConvTranspose2d(ngf * 2,     ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 64 x 64
            nn.ConvTranspose2d(    ngf,      nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 128 x 128
        )
    def forward(self, input):
        return self.main(input)

class Discriminator(nn.Module):
    def __init__(self, ngpu):
        super(Discriminator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is (nc) x 128 x 128
            nn.Conv2d(nc, ndf, 4, stride=2, padding=1, bias=False), 
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 64 x 64
            nn.Conv2d(ndf, ndf * 2, 4, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 32 x 32
            nn.Conv2d(ndf * 2, ndf * 4, 4, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 16 x 16 
            nn.Conv2d(ndf * 4, ndf * 8, 4, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 8 x 8
            nn.Conv2d(ndf * 8, ndf * 16, 4, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(ndf * 16),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*16) x 4 x 4
            nn.Conv2d(ndf * 16, 1, 4, stride=1, padding=0, bias=False),
            nn.Sigmoid()
            # state size. 1
        )
    def forward(self, input):
        return self.main(input)

# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0

print("Starting Training Loop...")
# For each epoch
for epoch in range(num_epochs):
    # For each batch in the dataloader
    for i, data in enumerate(dataloader, 0):
        ############################
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
        ###########################
        ## Train with all-real batch
        netD.zero_grad()
        # Format batch
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
        # Forward pass real batch through D
        output = netD(real_cpu).view(-1)
        # Calculate loss on all-real batch
        errD_real = criterion(output, label)
        # Calculate gradients for D in backward pass
        errD_real.backward()
        D_x = output.mean().item()

        ## Train with all-fake batch
        # Generate batch of latent vectors
        noise = torch.randn(b_size, nz, 1, 1, device=device)
        # Generate fake image batch with G
        fake = netG(noise)
        label.fill_(fake_label)
        # Classify all fake batch with D
        output = netD(fake.detach()).view(-1)
        # Calculate D's loss on the all-fake batch
        errD_fake = criterion(output, label)
        # Calculate the gradients for this batch, accumulated (summed) with previous gradients
        errD_fake.backward()
        D_G_z1 = output.mean().item()
        # Compute error of D as sum over the fake and the real batches
        errD = errD_real + errD_fake
        # Update D
        optimizerD.step()

        ############################
        # (2) Update G network: maximize log(D(G(z)))
        ###########################
        netG.zero_grad()
        label.fill_(real_label)  # fake labels are real for generator cost
        # Since we just updated D, perform another forward pass of all-fake batch through D
        output = netD(fake).view(-1)
        # Calculate G's loss based on this output
        errG = criterion(output, label)
        # Calculate gradients for G
        errG.backward()
        D_G_z2 = output.mean().item()
        # Update G
        optimizerG.step()

        # Output training stats
        if i % 50 == 0:
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                  % (epoch, num_epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

        # Save Losses for plotting later
        G_losses.append(errG.item())
        D_losses.append(errD.item())

        # Check how the generator is doing by saving G's output on fixed_noise
        if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            img_list.append(vutils.make_grid(fake, padding=2, normalize=True))

        iters += 1

How to modify those generators and discriminators for an image of size 256x256?

1

There are 1 answers

0
jsehn On

One simple way is to add an extra ConvTranspose2d, BatchNorm2d block into the generator (prior to the final ConvTranspose2d/Tanh block). You can use the same number of filters ngf -> ngf for simplicity; otherwise you'll need to reconfigure the channel scaling (e.g. start with 32 instead of 16).

For the discriminator, you can add an extra strided convolution block prior to the last Conv2d/Sigmoid block. Comments similar to generator apply to the number of channels to use.