How to automatically takeout only the p-values of the optimal parameter coefficients in "ugarchfit" in R

92 views Asked by At

My final aim is to derive the time series data of GARCH (1,1) volatility values over time corresponding to my existing return data.

To do this as a first step, I am trying to derive the volatility (i.e., sigma) value from the GARCH (1,1) model I run from the code "ugarchfit" in R.

From here, I know how to take out the optimal parameters coefficient estimates by using the command "coef()"

However, I am not able to pull out their corresponding p-values as well.

Is there an automatic way to do so? Or is there an alternative way to produce the same corresponding p-values if I am able to pull out the corresponding standard errors or t-test values instead?

The below is the full output I get.

 *---------------------------------*
 *          GARCH Model Fit        *
 *---------------------------------*

 Conditional Variance Dynamics  
 -----------------------------------
 GARCH Model    : sGARCH(1,1)
 Mean Model : ARFIMA(0,0,0)
 Distribution   : norm 

 Optimal Parameters
 ------------------------------------
         Estimate  Std. Error  t value Pr(>|t|)
 mu     -0.001183    0.008642 -0.13686 0.891143
 omega   0.006368    0.000713  8.92639 0.000000
 alpha1  0.334860    0.150390  2.22662 0.025973
 beta1   0.000000    0.187089  0.00000 1.000000

 Robust Standard Errors:
         Estimate  Std. Error  t value Pr(>|t|)
 mu     -0.001183    0.009319 -0.12692 0.899008
 omega   0.006368    0.002321  2.74405 0.006069
 alpha1  0.334860    0.175326  1.90993 0.056142
 beta1   0.000000    0.259065  0.00000 1.000000

 LogLikelihood : 90.52192 

 Information Criteria
 ------------------------------------
                
 Akaike       -1.8607
 Bayes        -1.7518
 Shibata      -1.8642
 Hannan-Quinn -1.8167

 Weighted Ljung-Box Test on Standardized Residuals
 ------------------------------------
                         statistic p-value
 Lag[1]                     0.1237  0.7251
 Lag[2*(p+q)+(p+q)-1][2]    0.1237  0.9033
 Lag[4*(p+q)+(p+q)-1][5]    2.2145  0.5687
 d.o.f=0
 H0 : No serial correlation

 Weighted Ljung-Box Test on Standardized Squared Residuals
 ------------------------------------
                         statistic p-value
 Lag[1]                      1.158  0.2819
 Lag[2*(p+q)+(p+q)-1][5]     1.868  0.6500
 Lag[4*(p+q)+(p+q)-1][9]     3.152  0.7337
 d.o.f=2

 Weighted ARCH LM Tests
 ------------------------------------
             Statistic Shape Scale P-Value
 ARCH Lag[3]    0.5813 0.500 2.000  0.4458
 ARCH Lag[5]    0.7021 1.440 1.667  0.8228
 ARCH Lag[7]    0.9818 2.315 1.543  0.9165

 Nyblom stability test
 ------------------------------------
 Joint Statistic:  0.7391
 Individual Statistics:              
 mu     0.09335
 omega  0.18718
 alpha1 0.07268
 beta1  0.29205

 Asymptotic Critical Values (10% 5% 1%)
 Joint Statistic:        1.07 1.24 1.6
 Individual Statistic:   0.35 0.47 0.75

 Sign Bias Test
 ------------------------------------
                    t-value   prob sig
 Sign Bias          0.25257 0.8012    
 Negative Sign Bias 0.08968 0.9287    
 Positive Sign Bias 0.22847 0.8198    
 Joint Effect       0.48299 0.9226    


 Adjusted Pearson Goodness-of-Fit Test:
 ------------------------------------
   group statistic p-value(g-1)
 1    20     34.53      0.01591
 2    30     37.00      0.14622
 3    40     51.09      0.09308
 4    50     49.47      0.45423
1

There are 1 answers

0
Andrew Gustar On BEST ANSWER

If modelfit is your model (i.e. modelfit <- ugarchfit(...)), then the p-values for the optimal parameters are in

modelfit@fit$matcoef[,4]

or for the robust parameters...

modelfit@fit$robust.matcoef[,4]