How to aggregate tweets per minute

955 views Asked by At

I´ve done some for-fun twitter-mining. I used twitters streaming-APi and recorded the tweets before, while and after a football match. Now i want to do a ggplot2-graph that shows the frequency of tweets on the football match.

In the original dataframe i´ve one row per tweet and a variable "created_at" which contains a date like this: Sat Dec 13 13:04:34 +0000 2014

Then i changed the time-format like this

tweets$format<- as.POSIXct(tweets$created_at, format = "%a %b %d %H:%M:%S %z %Y", tz="") an

and got this 2014-12-13 14:04:34 CET. Because i don´t need the date, i thought, i could get rid of it

tweets$Uhrzeit <- sub(".* ", "", tweets$format)

With this i have only the time left 14:04:34.

My Problem is, that i want to analyse the tweet-frequency with an accuracy of of tweets per minute. How do i aggregate the tweets per minute? As i said earlier, every row is a tweet. I made a dataframe with just the time and a second variable containing "1". Now i want to count (aggregate, sum) the second variable for every minute. I tried to find a solution, read about the zoo-library and the chron-library, but it left my confused.

Hope, somebody can help me.


EDIT: Reproducible Data The dataframe is a subset of this: names(tweets)

 [1] "X"                         "text"                      "retweet_count"            
 [4] "favorited"                 "truncated"                 "id_str"                   
 [7] "in_reply_to_screen_name"   "source"                    "retweeted"                
[10] "created_at"                "in_reply_to_status_id_str" "in_reply_to_user_id_str"  
[13] "lang"                      "listed_count"              "verified"                 
[16] "location"                  "user_id_str"               "description"              
[19] "geo_enabled"               "user_created_at"           "statuses_count"           
[22] "followers_count"           "favourites_count"          "protected"                
[25] "user_url"                  "name"                      "time_zone"                
[28] "user_lang"                 "utc_offset"                "friends_count"            
[31] "screen_name"               "country_code"              "country"                  
[34] "place_type"                "full_name"                 "place_name"               
[37] "place_id"                  "place_lat"                 "place_lon"                
[40] "lat"                       "lon"                       "expanded_url"             
[43] "url"                       "timeformat" 

I transformed the "created_at" variable to the "timeformat" variable, which looks like this:

tweets.df<-as.data.frame(cbind(c("2014-12-13 14:04:34 CET","2014-12-13 14:04:37 CET","2014-12-13 14:04:45 CET","2014-12-13 14:05:23 CET","2014-12-13 14:05:53 CET","2014-12-13 14:05:58 CET","2014-12-13 14:06:33 CET","2014-12-13 14:06:38 CET","2014-12-13 14:06:59 CET","2014-12-13 14:08:16 CET","2014-12-13 14:09:12 CET","2014-12-13 14:09:34 CET","2014-12-13 14:10:05 CET","2014-12-13 14:10:16 CET","2014-12-13 14:10:17 CET","2014-12-13 14:11:13 CET","2014-12-13 14:11:16 CET","2014-12-13 14:12:01 CET","2014-12-13 14:12:30 CET","2014-12-13 14:14:02 CET","2014-12-13 14:14:02 CET","2014-12-13 14:14:02 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:05 CET","2014-12-13 14:14:05 CET","2014-12-13 14:14:07 CET","2014-12-13 14:14:07 CET","2014-12-13 14:14:08 CET","2014-12-13 14:14:08 CET","2014-12-13 14:14:08 CET","2014-12-13 14:14:08 CET","2014-12-13 14:14:11 CET","2014-12-13 14:14:11 CET","2014-12-13 14:14:22 CET","2014-12-13 14:14:48 CET","2014-12-13 14:15:02 CET","2014-12-13 14:15:03 CET","2014-12-13 14:16:20 CET","2014-12-13 14:16:26 CET","2014-12-13 14:17:14 CET","2014-12-13 14:17:24 CET","2014-12-13 14:17:45 CET","2014-12-13 14:17:49 CET","2014-12-13 14:18:05 CET","2014-12-13 14:18:30 CET","2014-12-13 14:19:38 CET"),1))
colnames(tweets.df)<-c("time","freq")

I just plotted the data. stat="bin" which defaults bins to 1/30 of the range of the data. It would be nicer to have it per minute.

ggplot(tweets,aes(x=timeformat)) + geom_line(stat="bin")

enter image description here

1

There are 1 answers

0
plannapus On

GIven your example dataset:

tweets.df<-as.data.frame(cbind(c("2014-12-13 14:04:34 CET","2014-12-13 14:04:37 CET","2014-12-13 14:04:45 CET","2014-12-13 14:05:23 CET","2014-12-13 14:05:53 CET","2014-12-13 14:05:58 CET","2014-12-13 14:06:33 CET","2014-12-13 14:06:38 CET","2014-12-13 14:06:59 CET","2014-12-13 14:08:16 CET","2014-12-13 14:09:12 CET","2014-12-13 14:09:34 CET","2014-12-13 14:10:05 CET","2014-12-13 14:10:16 CET","2014-12-13 14:10:17 CET","2014-12-13 14:11:13 CET","2014-12-13 14:11:16 CET","2014-12-13 14:12:01 CET","2014-12-13 14:12:30 CET","2014-12-13 14:14:02 CET","2014-12-13 14:14:02 CET","2014-12-13 14:14:02 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:03 CET","2014-12-13 14:14:05 CET","2014-12-13 14:14:05 CET","2014-12-13 14:14:07 CET","2014-12-13 14:14:07 CET","2014-12-13 14:14:08 CET","2014-12-13 14:14:08 CET","2014-12-13 14:14:08 CET","2014-12-13 14:14:08 CET","2014-12-13 14:14:11 CET","2014-12-13 14:14:11 CET","2014-12-13 14:14:22 CET","2014-12-13 14:14:48 CET","2014-12-13 14:15:02 CET","2014-12-13 14:15:03 CET","2014-12-13 14:16:20 CET","2014-12-13 14:16:26 CET","2014-12-13 14:17:14 CET","2014-12-13 14:17:24 CET","2014-12-13 14:17:45 CET","2014-12-13 14:17:49 CET","2014-12-13 14:18:05 CET","2014-12-13 14:18:30 CET","2014-12-13 14:19:38 CET"),1), stringsAsFactors=FALSE)
colnames(tweets.df)<-c("time","freq")

First, your time column as it stands contains text string, you want POSIXct objects:

tweets.df$time <- as.POSIXct(tweets.df$time)

Then, binning by minutes is done using function cut.POSIXt:

by.mins <- cut.POSIXt(tweets.df$time,"mins")

Then you want to split your dataframe using this, and sum the column freq on the subsets:

tweets.mins <- split(tweets.df, by.mins)
sapply(tweets.mins,function(x)sum(as.integer(x$freq)))
2014-12-13 14:04:00 2014-12-13 14:05:00 2014-12-13 14:06:00 2014-12-13 14:07:00 2014-12-13 14:08:00 
                  3                   3                   3                   0                   1 
2014-12-13 14:09:00 2014-12-13 14:10:00 2014-12-13 14:11:00 2014-12-13 14:12:00 2014-12-13 14:13:00 
                  2                   3                   2                   2                   0 
2014-12-13 14:14:00 2014-12-13 14:15:00 2014-12-13 14:16:00 2014-12-13 14:17:00 2014-12-13 14:18:00 
                 20                   2                   2                   4                   2 
2014-12-13 14:19:00 
                  1 

In this case, since freq is always equals to 1 it is equivalent of using table(by.mins).