I am reading "Embedded Software Primer" by David E.Simon. In it discusses RTOS and its building blocks Scheduler and Task. It says each Task is either in Ready State, Running State, or Blocking State. My question is how the scheduler determines a Task is in Blocking State? Assume it's waiting for a Semaphore. Then it likely Semaphore is in a state it can't return. Does Scheduler see if a function does not return, then mark its state as Blocking?
How scheduler knows a Task is in blocking state?
1.5k views Asked by doubleE AtThere are 2 answers
As I'm writing a RTOS ( http://distortos.org/ ), I thought that I may chime in.
The variable which holds the state of each thread is indeed usually implemented in RTOSes, and this includes mine version: https://github.com/DISTORTEC/distortos/blob/master/include/distortos/ThreadState.hpp#L26 https://github.com/DISTORTEC/distortos/blob/master/include/distortos/internal/scheduler/ThreadControlBlock.hpp#L329
However this variable usually is used only as a debugging aid or for additional checks (like preventing you from starting a thread that is already started).
In RTOSes targeted at deeply embedded systems the distinction between ready/blocked is usually made using the containers that hold the threads. Usually the threads are "chained" in linked lists, usually also sorted by priority and insertion time. The scheduler has its own list of threads that are "ready" ( https://github.com/DISTORTEC/distortos/blob/master/include/distortos/internal/scheduler/Scheduler.hpp#L340 ). Each synchronization object (like a semaphore) also has its own list of threads which are "blocked" waiting for this object ( https://github.com/DISTORTEC/distortos/blob/master/include/distortos/Semaphore.hpp#L244 ) . When a thread attempts to use a semaphore that is currently not available, it is simply moved from the scheduler's "ready" list to semaphores's "blocked" list ( https://github.com/DISTORTEC/distortos/blob/master/source/synchronization/Semaphore.cpp#L82 ). The scheduler doesn't need to decide anything, as now - from scheduler's perspective - this thread is just gone. When this semaphore is now released by another thread, first thread which was waiting on this semaphore's "blocked" list is moved back to scheduler's "ready" list ( https://github.com/DISTORTEC/distortos/blob/master/source/synchronization/Semaphore.cpp#L39 ).
Usually there's no need to make special distinction between threads that are ready and the thread that is actually running. As the amount of threads that can actually run is fixed and equal to the number of available CPU cores, then all you need is a pointer for each CPU core which points to the thread from the "ready" list which is running at that core at that moment. In my system I do the same - the thread that is at the head of the "ready" list is the one that is running, but I also manage an iterator which points to that thread ( https://github.com/DISTORTEC/distortos/blob/master/include/distortos/internal/scheduler/Scheduler.hpp#L337 ). You could have a separate list for running threads, but in most cases it would be a waste of space (there's usually just one) and makes other things slightly more complicated.
I've actually wrote an article about thread states and their transitions if you're interested - http://distortos.org/documentation/task-states/ This article has no special distinction between the thread that is "ready" and the one that is actually running. I don't consider this distinction to be actually useful for anything, as long as you have other means to tell which of the "ready" threads is running.
The implementation details will vary by RTOS. Generally, each task has a state variable that identifies whether the task is ready, running, or blocked. The scheduler simply reads the task's state variable to determine whether the task is blocked.
Each task has a set of parameters that determine the state and context of the task. These parameters are often stored in a struct and called the "task control block" (although the implementation varies by RTOS). The ready/run/block state variable may be a part of the task control block.
When the task attempts to get the semaphore and the semaphore is not available then the task will be set to the blocked state. More specifically, the semaphore-get function will change the task from running to blocked. And then the scheduler will be called to determine which task should run next. The scheduler will read through the task state variables and will not run those tasks that are blocked.
When another task eventually sets the semaphore then the task that is blocked on the semaphore will be changed from the blocked to the ready state and the scheduler may be called to determine if a context switch should occur.