Looking to get the means of effects in R from a GLM. I can reliably get the predicted effects using, , however I really could do with the means.
library(ggeffects)
data(Cowles, package = "carData")
cowles.mod <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial)
summary(cowles.mod)
## Call:
## glm(formula = volunteer ~ sex + neuroticism * extraversion, family = binomial,
## data = Cowles)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.4749 -1.0602 -0.8934 1.2609 1.9978
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.358207 0.501320 -4.704 2.55e-06 ***
## sexmale -0.247152 0.111631 -2.214 0.02683 *
## neuroticism 0.110777 0.037648 2.942 0.00326 **
## extraversion 0.166816 0.037719 4.423 9.75e-06 ***
## neuroticism:extraversion -0.008552 0.002934 -2.915 0.00355 **
## ---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1933.5 on 1420 degrees of freedom
## Residual deviance: 1897.4 on 1416 degrees of freedom
## AIC: 1907.4
##
## Number of Fisher Scoring iterations: 4
pr <- ggpredict(cowles.mod, c("neuroticism", "extraversion"), type = "fe")
I don't have access to your data so I used different data to illustrate the answer