I have a system of nonlinear differential equations for a 3 degree of freedom vibratory system. system of differential equations
First I want to plot y, y_L and y_R against time (for a given value for Omega) and then I want to plot the domains (max values of y, y_L and y_R) against various amounts of Omega. Unfortunately, I am not good at Octave. I have written the following code in Octave (based on a sample given by one of the users), but it ends with this error: "anonymous function bodies must be single expressions".
I would be grateful if anyone can help me.
Here is the code:
Me = 4000;
me = 20;
c = 2000;
c1 = 700;
c2 = 700;
k = 20000;
k1 = 250000;
k2 = 20000;
a0 = 0.01;
om = 25;
mu1 = (c+2*c2)/(Me);
mu2 = (c2)/(Me);
mu3 = (c1+c2)/(me);
mu4 = (c2)/(me);
w12 = (2*k2)/(Me);
w22 = (k1+k2)/(me);
a1 = (k2)/(me);
a2 = (k)/(Me);
F0 = (k1*a0)/(Me);
couplode = @(t,y) [y(2); mu4*y(4) - mu3*y(2) - w22*y(1) + a1*y(3) + F0*cos(om*t); y(4); mu2*(y(2)+y(6)) - mu1*y(4) - w12*y(3) + 0.5*w12*(y(1)+y(5)) + a2((y(3)).^3; y(6); mu4*y(4) - mu3*y(6) - w22*y(5) + a1*y(3) + F0*cos(om*t)];
[t,y] = ode45(couplode, [0 0.49*pi], [1;1;1;1;1;1]*1E-8);
figure(1)
plot(t, y)
grid
str = {'$$ \dot{y_L} $$', '$$ y_L $$', '$$ \dot{y} $$', '$$ y $$', '$$ \dot{y_R} $$', '$$ y_R $$'};
legend(str, 'Interpreter','latex', 'Location','NW')
You have a strange term rather at the end of the vector definition
You certainly meant
You get better visibility and easier debugging by breaking that into separate lines
At least in this form, spaces or no spaces makes no difference. In general in matlab/octave
[a +b -c]
is the same as[a, +b, -c]
, so one has to be careful that the expression is not interpreted as matrix row. Spaces on both sites of the operation sign switches back to the single-expression interpretation.