im have RSSI readings but no idea how to find measurement and process noise. What is the way to find those values?
How can I find process noise and measurement noise in a Kalman filter if I have a set of RSSI readings?
1.3k views Asked by st20000428 Harith AtThere are 2 answers
A Kalman Filter is a mathematical construct for computing the expected state of a system that is changing over time, given an initial state and noisy measurements of that system. The key to the "process noise" component of this is the fact that the system is changing. The way that the system changes is the process.
Your state might change due to manual control or due to the nature of the system. For example, if you have a car on a hill, it can roll down the hill naturally (described by the state transition matrix), or you might drive it down the hill manually (described by the control input matrix). Any noise that might affect these inputs - wind, bumps, twitches - can be described with the process noise.
You can measure the process noise the way you would measure variance in any system - take the expected dynamics and compare them with the true dynamics to generate a covariance matrix.
Not at all. RSSI stands for "Received Signal Strength Indicator" and says absolutely nothing about the signal-to-noise ratio related to your Kalman filter. RSSI is not a "well-defined" things; it can mean a million things:
Defining the "strength" of a signal is a tricky thing. Imagine you're sitting in a car with an FM radio. What does the RSSI bars on that radio's display mean? Maybe:
as you can imagine, for systems like FM radios, this is still relatively easy. For things like mobile phones, multichannel GPS receivers, WiFi cards, digital beamforming radars etc., RSSI really can mean everything or nothing at all.
You will have to mathematically define away to describe what your noise is. And then you will need to find the formula that describes your exact implementation of what "RSSI" is, and then you can deduct whether knowing RSSI says anything about process noise.