I am new to dynamic programming (and C++ but I have more experience, some things are still unknown to me). How can I add LIMITED COINS to the coin change problem (see my code below - is a bit messy but I'm still working on it). I have a variable nr[100] that registers the number of coins (also created some conditions in my read_values() ). I don't know where can I use it in my code.
The code considers that we have an INFINITE supply of coins (which I don't want that). It is made in the bottom-up method (dynamic programming).
My code is inspired from this video: Youtube
#include <iostream>
using namespace std;
int C[100], b[100], n, S, s[100], nr[100], i, condition=0, ok=1;
void read_values() //reads input
{
cin >> n; // coin types
cin >> S; // amount to change
for (i=1; i<=n; i++)
{
cin >> b[i]; //coin value
cin>>nr[i]; //coin amount
if(nr[i]==0)b[i]=0; //if there are no coin amount then the coin is ignored
condition+=b[i]*nr[i]; //tests to see if we have enough coins / amount of coins to create a solution
if(b[i]>S)
{
b[i]=0;
}
}
if(S>condition)
{
cout<<endl;
cout<<"Impossible!";
ok=0;
}
}
void payS()
{
int i, j;
C[0] = 0; // if amount to change is 0 then the solution is 0
for (j=1; j<=S; j++)
{
C[j] = S+1;
for (i=1; i<=n; i++)
{
if (b[i] <= j && 1 + C[j - b[i]] < C[j])
{
C[j] = 1 + C[j - b[i]];
s[j] = b[i];
}
}
}
cout << "Minimum ways to pay the amount: " << C[S] << endl;
}
void solution(int j)
{
if (j > 0)
{
solution(j - s[j]);
cout << s[j] << " ";
}
}
int main()
{
read_values();
if(ok!=0)
{
payS();
cout << "The coins that have been used are: ";
solution(S);
}
}
I'm working under the assumption that you need to generate change for a positive integer value,
amount
using yournbr
table wherenbr[n]
is the number of coins available of valuen
. I'm also working under the assumption thatnbr[0]
is effectively meaningless since it would only represent coins of no value.Most dynamic programming problems are typically recursing on a binary decision of choosing option A vs option B. Often times one option is "pick this one" and other is "don't pick this one and use the rest of the available set". This problem is really no different.
First, let's solve the recursive dynamic problem without a cache.
I'm going to replace your
nbr
variable with a data structure called a"cointable"
. This is used to keep track of both the available set of coins and the set of coins selected for any given solution path:cointable::table
is effectively the same thing as yournbr
array.coinbase::number
is the summation of the values in table. It's not used to keep track of available coins, but it is used to keep track of the better solution.Now we can introduce the recursive solution without a lookup cache.
Each step of the recursion does this:
Look for the highest valuable coin that is in the set of available coins not greater than the target amount being solved for
Recurse on option A: Pick this coin selected from step 1. Now solve (recursively) for the reduced amount using the reduced set of available coins.
Recurse on option B: Don't pick this coin, but instead recurse with the first coin of lesser value than what was found in step 1.
Compare the recursion results of 2 and 3. Pick the one with lesser number of coins used
Here's the code - without using an optimal lookup cache
And then a quick demonstration for how to calculate change for 128 cents given a limited amount of coins in the larger denominations: {1:100, 5:20, 10:10, 25:1, 50:1}
And that should work. And it might be fast enough for most making change for anything under a dollar such that a cache is not warranted. So it's possible we can stop right here and be done.
And I am going to stop right here
I started to work on a solution that introduces a "cache" to avoid redundant recursions. But after benchmarking it and studying how the algorithm finds the best solution quickly, I'm not so sure a cache is warranted. My initial attempt to insert a cache table for both solvable and unsolvable solutions just made the code slower. I'll need to study how to make it work - if it's even warranted at all.