I am trying to run open source kNN join MapReduce hbrj algorithm on a Hadoop 2.6.0 for single node cluster - pseudo-distributed operation installed on my laptop (OSX). This is the code.
Mapper, reducer and the main driver:
public class RPhase2 extends Configured implements Tool
{
public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, IntWritable, RPhase2Value>
{
public void map(LongWritable key, Text value,
OutputCollector<IntWritable, RPhase2Value> output,
Reporter reporter) throws IOException
{
String line = value.toString();
String[] parts = line.split(" +");
// key format <rid1>
IntWritable mapKey = new IntWritable(Integer.valueOf(parts[0]));
// value format <rid2, dist>
RPhase2Value np2v = new RPhase2Value(Integer.valueOf(parts[1]), Float.valueOf(parts[2]));
System.out.println("############### key: " + mapKey.toString() + " np2v: " + np2v.toString());
output.collect(mapKey, np2v);
}
}
public static class Reduce extends MapReduceBase
implements Reducer<IntWritable, RPhase2Value, NullWritable, Text>
{
int numberOfPartition;
int knn;
class Record {...}
class RecordComparator implements Comparator<Record> {...}
public void configure(JobConf job)
{
numberOfPartition = job.getInt("numberOfPartition", 2);
knn = job.getInt("knn", 3);
System.out.println("########## configuring!");
}
public void reduce(IntWritable key, Iterator<RPhase2Value> values,
OutputCollector<NullWritable, Text> output,
Reporter reporter) throws IOException
{
//initialize the pq
RecordComparator rc = new RecordComparator();
PriorityQueue<Record> pq = new PriorityQueue<Record>(knn + 1, rc);
System.out.println("Phase 2 is at reduce");
System.out.println("########## key: " + key.toString());
// For each record we have a reduce task
// value format <rid1, rid2, dist>
while (values.hasNext())
{
RPhase2Value np2v = values.next();
int id2 = np2v.getFirst().get();
float dist = np2v.getSecond().get();
Record record = new Record(id2, dist);
pq.add(record);
if (pq.size() > knn)
pq.poll();
}
while(pq.size() > 0)
{
output.collect(NullWritable.get(), new Text(key.toString() + " " + pq.poll().toString()));
//break; // only ouput the first record
}
} // reduce
} // Reducer
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), RPhase2.class);
conf.setJobName("RPhase2");
conf.setMapOutputKeyClass(IntWritable.class);
conf.setMapOutputValueClass(RPhase2Value.class);
conf.setOutputKeyClass(NullWritable.class);
conf.setOutputValueClass(Text.class);
conf.setMapperClass(MapClass.class);
conf.setReducerClass(Reduce.class);
int numberOfPartition = 0;
List<String> other_args = new ArrayList<String>();
for(int i = 0; i < args.length; ++i)
{
try {
if ("-m".equals(args[i])) {
//conf.setNumMapTasks(Integer.parseInt(args[++i]));
++i;
} else if ("-r".equals(args[i])) {
conf.setNumReduceTasks(Integer.parseInt(args[++i]));
} else if ("-p".equals(args[i])) {
numberOfPartition = Integer.parseInt(args[++i]);
conf.setInt("numberOfPartition", numberOfPartition);
} else if ("-k".equals(args[i])) {
int knn = Integer.parseInt(args[++i]);
conf.setInt("knn", knn);
System.out.println(knn + "~ hi");
} else {
other_args.add(args[i]);
}
conf.setNumReduceTasks(numberOfPartition * numberOfPartition);
//conf.setNumReduceTasks(1);
} catch (NumberFormatException except) {
System.out.println("ERROR: Integer expected instead of " + args[i]);
return printUsage();
} catch (ArrayIndexOutOfBoundsException except) {
System.out.println("ERROR: Required parameter missing from " + args[i-1]);
return printUsage();
}
}
FileInputFormat.setInputPaths(conf, other_args.get(0));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new RPhase2(), args);
}
} // RPhase2
When I run this the mapper is successful but the job terminates suddenly, and the reducer never instantiated. Moreover, no errors are ever printed (even in the log files). I know that also because the print statements in the configuration of the Reducer never get printed. Output:
15/06/15 14:00:37 INFO mapred.LocalJobRunner: map task executor complete.
15/06/15 14:00:38 INFO mapreduce.Job: map 100% reduce 0%
15/06/15 14:00:38 INFO mapreduce.Job: Job job_local833125918_0001 completed successfully
15/06/15 14:00:38 INFO mapreduce.Job: Counters: 20
File System Counters
FILE: Number of bytes read=12505456
FILE: Number of bytes written=14977422
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=11408
HDFS: Number of bytes written=8724
HDFS: Number of read operations=216
HDFS: Number of large read operations=0
HDFS: Number of write operations=99
Map-Reduce Framework
Map input records=60
Map output records=60
Input split bytes=963
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=14
Total committed heap usage (bytes)=1717567488
File Input Format Counters
Bytes Read=2153
File Output Format Counters
Bytes Written=1645
What I have done so far:
I have been looking at similar questions, and I found the most frequent problem is not configuring the output formats when the output of the mapper and reducer are different which is done in the code above: conf.setMapOutputKeyClass(Class); conf.setMapOutputValueClass(Class);
In another post I found a suggestion to change reduce(..., Iterator <...>, ...) to (..., Iterable <...>, ...) which gave me trouble compiling. I could no longer use .getNext() and .next() methods as well as got this error:
error: Reduce is not abstract and does not override abstract method reduce(IntWritable,Iterator,OutputCollector,Reporter) in Reducer
If anyone has any hints or suggestions on what I can try to find what the issue is I would be very appreciative!
Just a note that I have posted a question about my problem before in here (Hadoop kNN join algorithm stuck at map 100% reduce 0%) but it did not get enough attention so I wanted to re-ask this from a different perspective. You could use this link for more details on my log files.
I have figured out the problem and it was something silly. If you notice in the code above, numberOfPartition is set to 0 before the arguments are read, and the number of reducers are set to numberOfPartition * numberOfPartition. I, as the user did not change the number of partitions parameter (mostly because I simply copy pasted the argument line from their provided README) so that's why the reducer never even started.