GradientTape compute saliency in the loss function

432 views Asked by At

I'm trying to build an LSTM network to classify sentences and provide explanation for the classification using saliency. This network must learn from the true class y_true as well as from which words he shouldn't pay attention Z (binary mask).

This paper inspired us to come up with our loss function. Here's what I'd like my loss function to look like :

enter image description here

Coût de classification translates to classification_loss and Coût d'explication (saillance) to saliency_loss (which is the same as gradient of output wrt the input) in the code below. I tried to implement this with a custom Model in Keras, with Tensorflow as backend :

loss_tracker = metrics.Mean(name="loss")
classification_loss_tracker = metrics.Mean(name="classification_loss")
saliency_loss_tracker = metrics.Mean(name="saliency_loss")
accuracy_tracker = metrics.CategoricalAccuracy(name="accuracy")

class CustomSequentialModel(Sequential):
        
    def _train_test_step(self, data, training):
        # Unpack the data
        X = data[0]["X"]
        Z = data[0]["Z"] # binary mask (1 for important words)
        y_true = data[1]
        
        # gradient tape requires "float32" instead of "int32"
        # X.shape = (None, MAX_SEQUENCE_LENGTH, EMBEDDING_DIM)
        X = tf.cast(X, tf.float32)

        # Persitent=True because we call the `gradient` more than once
        with GradientTape(persistent=True) as tape:
            # The tape will record everything that happens to X
            # for automatic differentiation later on (used to compute saliency)
            tape.watch(X)
            # Forward pass
            y_pred = self(X, training=training) 
            
            # (1) Compute the classification_loss
            classification_loss = K.mean(
                categorical_crossentropy(y_true, y_pred)
            )
 
            # (2) Compute the saliency loss
            # (2.1) Compute the gradient of output wrt the maximum probability
            log_prediction_proba = K.log(K.max(y_pred))
            
        # (2.2) Compute the gradient of the output wrt the input
        # saliency.shape is (None, MAX_SEQUENCE_LENGTH, None)
        # why isn't it (None, MAX_SEQUENCE_LENGTH, EMBEDDING_DIM) ?!
        saliency = tape.gradient(log_prediction_proba, X)
        # (2.3) Sum along the embedding dimension
        saliency = K.sum(saliency, axis=2)
        # (2.4) Sum with the binary mask
        saliency_loss = K.sum(K.square(saliency)*(1-Z))
        # =>  ValueError: No gradients provided for any variable
        loss = classification_loss + saliency_loss 
        
        trainable_vars = self.trainable_variables
        # ValueError caused by the '+ saliency_loss'
        gradients = tape.gradient(loss, trainable_vars) 
        del tape # garbage collection
        
        if training:
            # Update weights
            self.optimizer.apply_gradients(zip(gradients, trainable_vars))
        
        # Update metrics
        saliency_loss_tracker.update_state(saliency_loss)
        classification_loss_tracker.update_state(classification_loss)
        loss_tracker.update_state(loss)
        accuracy_tracker.update_state(y_true, y_pred)
        
        # Return a dict mapping metric names to current value
        return {m.name: m.result() for m in self.metrics}
    
    def train_step(self, data):
        return self._train_test_step(data, True)
    
    def test_step(self, data):
        return self._train_test_step(data, False)
    
    @property
    def metrics(self):
        return [
            loss_tracker,
            classification_loss_tracker,
            saliency_loss_tracker,
            accuracy_tracker
        ]

I manage to compute classification_loss as well as saliency_loss and I get a scalar value. However, this works : tape.gradient(classification_loss, trainable_vars) but this doesn't tape.gradient(classification_loss + saliency_loss, trainable_vars) and throws ValueError: No gradients provided for any variable.

2

There are 2 answers

1
xdurch0 On BEST ANSWER

You are doing computations outside the tape context (after the first gradient call) and are then trying to take more gradients afterwards. This doesn't work; all operations to differentiate need to happen inside the context manager. I would suggest to restructure your code as follows, using two nested tapes:

with GradientTape() as loss_tape:
    with GradientTape() as saliency_tape:
        # The tape will record everything that happens to X
        # for automatic differentiation later on (used to compute saliency)
        saliency_tape.watch(X)
        # Forward pass
        y_pred = self(X, training=training) 
        
        # (2) Compute the saliency loss
        # (2.1) Compute the gradient of output wrt the maximum probability
        log_prediction_proba = K.log(K.max(y_pred))
        
    # (2.2) Compute the gradient of the output wrt the input
    # saliency.shape is (None, MAX_SEQUENCE_LENGTH, None)
    # why isn't it (None, MAX_SEQUENCE_LENGTH, EMBEDDING_DIM) ?!
    saliency = saliency_tape.gradient(log_prediction_proba, X)
    # (2.3) Sum along the embedding dimension
    saliency = K.sum(saliency, axis=2)
    # (2.4) Sum with the binary mask
    saliency_loss = K.sum(K.square(saliency)*(1-Z))

    # (1) Compute the classification_loss
    classification_loss = K.mean(
        categorical_crossentropy(y_true, y_pred)
    )

    loss = classification_loss + saliency_loss 
    
trainable_vars = self.trainable_variables
gradients = loss_tape.gradient(loss, trainable_vars)

Now we have one tape responsible for computing the gradients wrt the input for the saliency. We have another tape around it which tracks those operations and can later compute the gradient of the gradient (i.e. gradient of the saliency). This tape also computes gradients for the classification loss. I moved the classification loss in the outer tape context because the inner tape doesn't need it. Note also how even the addition of the two losses is inside the contex of the outer tape -- everything has to happen in there, else the computation graph is lost/incomplete and gradients cannot be computed.

1
Andrey On

Try to decorate train_step() with @tf.function