For my science fair project I have to write a computationally-intensive algorithm that is well suited to parallelization. I have read about OpenCL and CUDA and it seems they are mainly used from C/C++. While it would not be that difficult for me to pick up a bit of C to write a simple main, I was wondering how big the performance hit would be if I used Java or Python bindings for my GPU computation? Specifically, I was more interested in the performance hit using CUDA because that's the framework I'm planning on using.
GPGPU performance in high-level languages
317 views Asked by Elliot Gorokhovsky At
1
There are 1 answers
Related Questions in CUDA
- Two different numbers in an array which their sum equals to a given value
- Given two arrays of positive numbers, re-arrange them to form a resulting array, resulting array contains the elements in the same given sequence
- Time complexity of the algorithm?
- Find a MST in O(V+E) Time in a Graph
- Why k and l for LSH used for approximate nearest neighbours?
- How to count the number of ways of choosing of k equal substrings from a List L(the list of All Substrings)
- Issues with reversing the linkedlist
- Finding first non-repeating number in integer array
- Finding average of an array
- How to check for duplicates with less time in a list over 9000 elements by python
Related Questions in OPENCL
- Two different numbers in an array which their sum equals to a given value
- Given two arrays of positive numbers, re-arrange them to form a resulting array, resulting array contains the elements in the same given sequence
- Time complexity of the algorithm?
- Find a MST in O(V+E) Time in a Graph
- Why k and l for LSH used for approximate nearest neighbours?
- How to count the number of ways of choosing of k equal substrings from a List L(the list of All Substrings)
- Issues with reversing the linkedlist
- Finding first non-repeating number in integer array
- Finding average of an array
- How to check for duplicates with less time in a list over 9000 elements by python
Related Questions in GPGPU
- Two different numbers in an array which their sum equals to a given value
- Given two arrays of positive numbers, re-arrange them to form a resulting array, resulting array contains the elements in the same given sequence
- Time complexity of the algorithm?
- Find a MST in O(V+E) Time in a Graph
- Why k and l for LSH used for approximate nearest neighbours?
- How to count the number of ways of choosing of k equal substrings from a List L(the list of All Substrings)
- Issues with reversing the linkedlist
- Finding first non-repeating number in integer array
- Finding average of an array
- How to check for duplicates with less time in a list over 9000 elements by python
Related Questions in PYCUDA
- Two different numbers in an array which their sum equals to a given value
- Given two arrays of positive numbers, re-arrange them to form a resulting array, resulting array contains the elements in the same given sequence
- Time complexity of the algorithm?
- Find a MST in O(V+E) Time in a Graph
- Why k and l for LSH used for approximate nearest neighbours?
- How to count the number of ways of choosing of k equal substrings from a List L(the list of All Substrings)
- Issues with reversing the linkedlist
- Finding first non-repeating number in integer array
- Finding average of an array
- How to check for duplicates with less time in a list over 9000 elements by python
Related Questions in JOCL
- Two different numbers in an array which their sum equals to a given value
- Given two arrays of positive numbers, re-arrange them to form a resulting array, resulting array contains the elements in the same given sequence
- Time complexity of the algorithm?
- Find a MST in O(V+E) Time in a Graph
- Why k and l for LSH used for approximate nearest neighbours?
- How to count the number of ways of choosing of k equal substrings from a List L(the list of All Substrings)
- Issues with reversing the linkedlist
- Finding first non-repeating number in integer array
- Finding average of an array
- How to check for duplicates with less time in a list over 9000 elements by python
Popular Questions
- How do I undo the most recent local commits in Git?
- How can I remove a specific item from an array in JavaScript?
- How do I delete a Git branch locally and remotely?
- Find all files containing a specific text (string) on Linux?
- How do I revert a Git repository to a previous commit?
- How do I create an HTML button that acts like a link?
- How do I check out a remote Git branch?
- How do I force "git pull" to overwrite local files?
- How do I list all files of a directory?
- How to check whether a string contains a substring in JavaScript?
- How do I redirect to another webpage?
- How can I iterate over rows in a Pandas DataFrame?
- How do I convert a String to an int in Java?
- Does Python have a string 'contains' substring method?
- How do I check if a string contains a specific word?
Popular Tags
Trending Questions
- UIImageView Frame Doesn't Reflect Constraints
- Is it possible to use adb commands to click on a view by finding its ID?
- How to create a new web character symbol recognizable by html/javascript?
- Why isn't my CSS3 animation smooth in Google Chrome (but very smooth on other browsers)?
- Heap Gives Page Fault
- Connect ffmpeg to Visual Studio 2008
- Both Object- and ValueAnimator jumps when Duration is set above API LvL 24
- How to avoid default initialization of objects in std::vector?
- second argument of the command line arguments in a format other than char** argv or char* argv[]
- How to improve efficiency of algorithm which generates next lexicographic permutation?
- Navigating to the another actvity app getting crash in android
- How to read the particular message format in android and store in sqlite database?
- Resetting inventory status after order is cancelled
- Efficiently compute powers of X in SSE/AVX
- Insert into an external database using ajax and php : POST 500 (Internal Server Error)
In general, every time you add an abstraction layer you're loosing performance but, in the case of CUDA this is not completely true because, whether using Python or Java you'll end up writing your CUDA kernels on C/Fortran, so the performance in the GPU side will be the same as using C/Fortran (check some pyCUDA examples here)
The bad news it that Java and Python will never achieve the performance of compiled languages such as C on certain tasks, see this SO answer for a more detailed discussion about this topic. Here is a good discussion about C versus Java, also on SO.
There are many questions and discussions about performance comparison between interpreted and compiled languages, so I encourage you to read some of them.