I am performing Federated learning using pysyft and pytorch. I am using a diabetes dataset. I got this error while training(element 0 of tensors does not require grad and does not have a grad_fn). I am attaching the screen shots of my error and also the note book file:
My code:
epochs = 500
final_loss = []
for i in range(epochs):
i = i + 1
model.train()
for batch_idx, (data, target) in enumerate(federated_train_loader): # <-- now it is a distributed dataset
model.send(data.location) # <-- NEW: send the model to the right location
data, target = data.to(device), target.to(device)
output = model.forward(data)
loss = loss_function(output, target)
final_loss.append(loss)
if i % 10 == 1:
print('Epoch number: {} and the loss: {}'.format(i, loss.get()))
optimizer.zero_grad() ## Clears the gradients of all optimized class
loss.backward() ## for backward propagation and to find the derivative
optimizer.step() ## performs a single optimization step.
model.get()
My model:
class ANN_Model(nn.Module):
def __init__(self, input_features = 8, hidden1 = 20, hidden2 = 20, out_features = 2):
super().__init__()
self.f_connected1 = nn.Linear(input_features, hidden1)
self.f_connected2 = nn.Linear(hidden1, hidden2)
self.out = nn.Linear(hidden2, out_features)
def forward(self, x):
x = F.relu(self.f_connected1(x))
x = F.relu(self.f_connected2(x))
x = self.out(x)
return x