My main
function reads json from a file, unmarshals it into a struct, converts it into another struct type and spits out formatted JSON through stdout.
I'm trying to implement goroutines and channels to add concurrency to my for
loop.
func main() {
muvMap := map[string]string{"male": "M", "female": "F"}
fileA, err := os.Open("serviceAfileultimate.json")
if err != nil {
panic(err)
}
defer fileA.Close()
data := make([]byte, 10000)
count, err := fileA.Read(data)
if err != nil {
panic(err)
}
dataBytes := data[:count]
var servicesA ServiceA
json.Unmarshal(dataBytes, &servicesA)
var servicesB = make([]ServiceB, servicesA.Count)
goChannels := make(chan ServiceB, servicesA.Count)
for i := 0; i < servicesA.Count; i++ {
go func() {
reflect.ValueOf(&servicesB[i]).Elem().FieldByName("Address").SetString(Merge(&servicesA.Users[i].Location))
reflect.ValueOf(&servicesB[i]).Elem().FieldByName("Date_Of_Birth").SetString(dateCopyTransform(servicesA.Users[i].Dob))
reflect.ValueOf(&servicesB[i]).Elem().FieldByName("Email").SetString(servicesA.Users[i].Email)
reflect.ValueOf(&servicesB[i]).Elem().FieldByName("Fullname").SetString(Merge(&servicesA.Users[i].Name))
reflect.ValueOf(&servicesB[i]).Elem().FieldByName("Gender").SetString(muvMap[servicesA.Users[i].Gender])
reflect.ValueOf(&servicesB[i]).Elem().FieldByName("Phone").SetString(servicesA.Users[i].Cell)
reflect.ValueOf(&servicesB[i]).Elem().FieldByName("Username").SetString(servicesA.Users[i].Username)
goChannels <- servicesB[i]
}()
}
for index := range goChannels {
json.NewEncoder(os.Stdout).Encode(index)
}
}
It compiles but is returning messages like:
goroutine 1 [chan receive]: main.main() C://.....go.94 +0x55b.
You're printing the channels info, not the data it contains. You don't want a loop, you just want to receive then print.
Now I do I need to point out, that code is not going to block. If you want to keep reading until all work is done you need some kind of locking/coordination mechanism.
You'll often see things like
To deal with that. Also, just fyi you're initializing your channel with a default capacity (meaning it's a buffered channel) which is pretty odd. I'd recommend reviewing some tutorials on the topic cause overall your design needs some work actually be an improvement of non-concurrent implementations. Lastly you can find libraries to abstract some of this work for you and most people would probably recommend you do. Here's an example; https://github.com/lytics/squaredance