Given groups=1, weight of size [8, 3, 3, 3], expected input[1, 1000, 28, 28] to have 3 channels, but got 1000 channels instead

40 views Asked by At

I tried to implement a Residual connection neural network and recreate Lenet-5, and can't set up architecture Here is Residual connection block

class ResidualBlock(torch.nn.Module): 

    def __init__(  
        self,
        input_c,  # Число каналов на входе
        output_c,  # Число каналов на выходе
        kernel_size,  # Размер ядра
        activation=torch.nn.ReLU,  # Класс функции активации
    ):
        super().__init__()
        # Функция активации для нелинейности
        self.activation = activation()

        # Паддинг подбираем такой, чтобы размеры h и w изображения не менялись
        #  (считаем что размер ядра всегда нечётный)
        padding_size = (kernel_size - 1) // 2

        # Операция свёртки
        self.conv = torch.nn.Conv2d(
            in_channels=input_c,
            out_channels=output_c,
            kernel_size=kernel_size,
            padding=padding_size,
            padding_mode="zeros",
        )

        # Если число каналов у входа и выхода различаются, то будем делать свёртку с
        #  ядром размера 1
        if input_c != output_c:
            self.correct_channels = torch.nn.Conv2d(
                in_channels=input_c,
                out_channels=output_c,
                kernel_size=1,
            )
        else:
            self.correct_channels = torch.nn.Identity()

Here's architecture

class MyModel(torch.nn.Module):
    def __init__(self):
      super().__init__()
      
      self.conv1 = ResidualBlock(input_c=1, output_c=6, kernel_size=5,)
      self.maxpool1 = torch.nn.MaxPool2d(kernel_size=2)
      self.conv2 = ResidualBlock(input_c=6, output_c=16, kernel_size=5)
      self.maxpool2 = torch.nn.MaxPool2d(kernel_size=2)
      self.conv3 = ResidualBlock(input_c=16, output_c=120, kernel_size=5)

      self.lin1 = torch.nn.Linear(in_features=120, out_features=84)
      self.relu1 = torch.nn.ReLU()
      self.lin2 = torch.nn.Linear(in_features=84, out_features=10)
      self.softmax = torch.nn.Softmax()

    def forward(self, x):
      x = self.activation(self.conv(x) + self.correct_channels(x))
      x = self.maxpool1(x)
      x = self.activation(self.conv(x) + self.correct_channels(x))
      x = self.maxpool2(x)
      x = self.activation(self.conv(x) + self.correct_channels(x))

      x = self.lin1(x)
      x = self.relu1(x)
      x = self.lin2(x)
      x = self.softmax(x)

      return x
model = MyModel()

I tried to change the sizes of the input and output channels, but nothing worked

1

There are 1 answers

0
Chih-Hao Liu On

I've made some modifications to your code:

class ResidualBlock(torch.nn.Module): 
    def __init__(  
        self,
        input_c,  # Число каналов на входе
        output_c,  # Число каналов на выходе
        kernel_size,  # Размер ядра
        activation=torch.nn.ReLU,  # Класс функции активации
    ):
        super().__init__()
        # Функция активации для нелинейности
        self.activation = activation()
        # Паддинг подбираем такой, чтобы размеры h и w изображения не менялись
        #  (считаем что размер ядра всегда нечётный)
        padding_size = (kernel_size - 1) // 2
        # Операция свёртки
        self.conv = torch.nn.Conv2d(
            in_channels=input_c,
            out_channels=output_c,
            kernel_size=kernel_size,
            padding=padding_size,
            padding_mode="zeros",
        )
        # Если число каналов у входа и выхода различаются, то будем делать свёртку с
        #  ядром размера 1
        if input_c != output_c:
            self.correct_channels = torch.nn.Conv2d(
                in_channels=input_c,
                out_channels=output_c,
                kernel_size=1,
            )
        else:
            self.correct_channels = torch.nn.Identity()
    def forward(self,x):
      return self.activation(self.conv(x) + self.correct_channels(x))

and

class MyModel(torch.nn.Module):
    def __init__(self):
      super().__init__()
      self.conv1 = ResidualBlock(input_c=1, output_c=6, kernel_size=5,)
      self.maxpool1 = torch.nn.MaxPool2d(kernel_size=2)
      self.conv2 = ResidualBlock(input_c=6, output_c=16, kernel_size=5)
      self.maxpool2 = torch.nn.MaxPool2d(kernel_size=2)
      self.conv3 = ResidualBlock(input_c=16, output_c=120, kernel_size=5)
      self.lin1 = torch.nn.Linear(in_features=120*64*64, out_features=84)
      self.relu1 = torch.nn.ReLU()
      self.lin2 = torch.nn.Linear(in_features=84, out_features=10)
      self.softmax = torch.nn.Softmax()

    def forward(self, x):
      x = self.conv1(x)
      x = self.maxpool1(x)
      x = self.conv2(x)
      x = self.maxpool2(x)
      x = self.conv3(x)
      x = x.view(x.shape[0], -1)
      x = self.lin1(x)
      x = self.relu1(x)
      x = self.lin2(x)
      x = self.softmax(x)
      return x
model = MyModel()
  1. Move the self.activation(self.conv(x) + self.correct_channels(x)) line to the ResidualBlock class for clarity.

  2. Add x = x.view(x.shape[0], -1) to flatten the extracted convolutional features.

  3. The size of self.lin1 depends on the size of your input tensor. In the provided code, I assumed the input size to be [8, 1, 256, 256]. Since you use torch.nn.MaxPool2d twice in your model, the tensor size would be [8, 120, 64, 64] after passing through self.conv3. Consequently, the tensor size would change to [8, 491520] (120 * 64 * 64 = 491520) after passsing through x.view(x.shape[0], -1), so it requires the adjustment in self.lin1 to torch.nn.Linear(in_features=120*64*64, out_features=84). Similarly, if your input tensor shape differs, such as [8, 1, 1000, 1000], you should set self.lin1 as torch.nn.Linear(in_features=120*250*250, out_features=84).

  4. For more information about LeNet-5, you can refer this repository: https://github.com/ChawDoe/LeNet5-MNIST-PyTorch/blob/master/model.py