I am using Theano and Keras and using the below command, trying to load the weights of VGG Net from the .h5 file.
VGG Net Model Definition:
def VGG_16(weights_path=None):
model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))
if weights_path:
model.load_weights(weights_path)
return model
Trying to load the weights using the below command
model = VGG_16('vgg16_weights_th_dim_ordering_th_kernels.h5')
And got the below one as error:
'AttributeError Traceback (most recent call last)
<ipython-input-3-e815cc7d5738> in <module>()
1 #model = VGG_16('vgg16_weights_tf_dim_ordering_tf_kernels.h5')
----> 2 model = VGG_16('vgg16_weights_th_dim_ordering_th_kernels.h5')
3 #sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
4 #model.compile(optimizer=sgd, loss='categorical_crossentropy')
<ipython-input-2-f9b05d09c080> in VGG_16(weights_path)
39 model.add(Flatten())
40 model.add(Dense(4096, activation='relu'))
---> 41 model.add(Dropout(0.5))
42 model.add(Dense(4096, activation='relu'))
43 model.add(Dropout(0.5))
c:\users\sekhar\onedrive\insofe\classes\week17\for_keras\keras-master\keras\models.pyc in add(self, layer)
330 output_shapes=[self.outputs[0]._keras_shape])
331 else:
--> 332 output_tensor = layer(self.outputs[0])
333 if isinstance(output_tensor, list):
334 raise TypeError('All layers in a Sequential model '
c:\users\sekhar\onedrive\insofe\classes\week17\for_keras\keras-master\keras\engine\topology.pyc in __call__(self, x, mask)
570 if inbound_layers:
571 # This will call layer.build() if necessary.
--> 572 self.add_inbound_node(inbound_layers, node_indices, tensor_indices)
573 # Outputs were already computed when calling self.add_inbound_node.
574 outputs = self.inbound_nodes[-1].output_tensors
c:\users\sekhar\onedrive\insofe\classes\week17\for_keras\keras-master\keras\engine\topology.pyc in add_inbound_node(self, inbound_layers, node_indices, tensor_indices)
633 # creating the node automatically updates self.inbound_nodes
634 # as well as outbound_nodes on inbound layers.
--> 635 Node.create_node(self, inbound_layers, node_indices, tensor_indices)
636
637 def get_output_shape_for(self, input_shape):
c:\users\sekhar\onedrive\insofe\classes\week17\for_keras\keras-master\keras\engine\topology.pyc in create_node(cls, outbound_layer, inbound_layers, node_indices, tensor_indices)
164
165 if len(input_tensors) == 1:
--> 166 output_tensors = to_list(outbound_layer.call(input_tensors[0], mask=input_masks[0]))
167 output_masks = to_list(outbound_layer.compute_mask(input_tensors[0], input_masks[0]))
168 # TODO: try to auto-infer shape
c:\users\sekhar\onedrive\insofe\classes\week17\for_keras\keras-master\keras\layers\core.pyc in call(self, x, mask)
108 def dropped_inputs():
109 return K.dropout(x, self.p, noise_shape, seed=self.seed)
--> 110 x = K.in_train_phase(dropped_inputs, lambda: x)
111 return x
112
c:\users\sekhar\onedrive\insofe\classes\week17\for_keras\keras-master\keras\backend\theano_backend.pyc in in_train_phase(x, alt)
1166 if callable(alt):
1167 alt = alt()
-> 1168 x = theano.ifelse.ifelse(_LEARNING_PHASE, x, alt)
1169 x._uses_learning_phase = True
1170 return x
AttributeError: 'module' object has no attribute 'ifelse'
What would be the probable solution to this problem??
One of my friend says other than re-installing Anaconda and Theano there is no other alternative. Please adivce.
Your version of theano is probably too new for that version of Keras. You should try downgrading theano to 0.9.x, and also upgrading Keras to 2.0 at least. Then it should work perfectly.