So I'm trying to follow the DCGAN guide for image generation on tensorflow https://www.tensorflow.org/tutorials/generative/dcgan , and I have the code replicated pretty closely, just changing the dataset to one that I want to use. Whenever I try to train the model I'm getting this error -
ValueError: Layer sequential_1 expects 1 inputs, but it received 2 input tensors. Inputs received: [<tf.Tensor 'images:0' shape=(256, 28, 28, 3) dtype=float32>, <tf.Tensor 'images_1:0' shape=(256,) dtype=int32>]
Specifically this line in the train_step function is causing the error,
real_output = discriminator(images, training=True)
when it gets called here within the train function
train(normalizedData, epochs)
The definition of the discriminator function is this, earlier in the code:
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5,5), strides=(2,2), padding='same', input_shape=[28, 28, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5,5), strides=(2,2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
discriminator = make_discriminator_model()
Here is the rest of that block for context.
@tf.function
def train_step(images):
noise = tf.random.normal([batch_size, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
start = time.time()
for image_batch in dataset:
train_step(image_batch)
display.clear_output(wait=True)
generate_and_save_images(generator,
epoch + 1,
seed)
if (epoch + 1) % 15 == 0:
checkpoint.save(file_prefix = checkpoint_prefix)
print('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
display.clear_output(wait=True)
generate_and_save_images(generator,
epochs,
seed)
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4,4))
for i in range(predictions.shape[0]):
plt.subplot(4,4,i+1)
plt.imshow(predicitons[i, :, :, 0] * 127.5 + 127.5, cmap='gist_rainbow')
plt.axis('off')
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()
train(normalizedData, epochs)
I've seen different variations of this question on here about this value error, from what I've gathered that sequential layer is being input a list instead of a tuple?
Thank you for your time and any help you can offer.
The error is telling you that your inputs to discriminator is shape of
[<tf.Tensor 'images:0' shape=(256, 28, 28, 3) dtype=float32>, <tf.Tensor 'images_1:0' shape=(256,) dtype=int32>]
, but the discriminator you defined haveinput_shape=[28, 28, 1]
Check the
images
you feed in discriminator at the linereal_output = discriminator(images, training=True)
, make sureimages
have have same shape with discriminator's input_shape, e.g (256, 28, 28, 3)