I'm trying to implement the Generalized Dice Loss as implemented in NiftyNet, in a different convnet written in Keras (TF backend).
def generalised_dice_loss(prediction,
ground_truth,
weight_map=None,
type_weight='Square'):
"""
Function to calculate the Generalised Dice Loss defined in
Sudre, C. et. al. (2017) Generalised Dice overlap as a deep learning
loss function for highly unbalanced segmentations. DLMIA 2017
:param prediction: the logits
:param ground_truth: the segmentation ground truth
:param weight_map:
:param type_weight: type of weighting allowed between labels (choice
between Square (square of inverse of volume),
Simple (inverse of volume) and Uniform (no weighting))
:return: the loss
"""
prediction = tf.cast(prediction, tf.float32)
if len(ground_truth.shape) == len(prediction.shape):
ground_truth = ground_truth[..., -1]
one_hot = labels_to_one_hot(ground_truth, tf.shape(prediction)[-1])
if weight_map is not None:
n_classes = prediction.shape[1].value
weight_map_nclasses = tf.reshape(
tf.tile(weight_map, [n_classes]), prediction.get_shape())
ref_vol = tf.sparse_reduce_sum(
weight_map_nclasses * one_hot, reduction_axes=[0])
intersect = tf.sparse_reduce_sum(
weight_map_nclasses * one_hot * prediction, reduction_axes=[0])
seg_vol = tf.reduce_sum(
tf.multiply(weight_map_nclasses, prediction), 0)
else:
ref_vol = tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
intersect = tf.sparse_reduce_sum(one_hot * prediction,
reduction_axes=[0])
seg_vol = tf.reduce_sum(prediction, 0)
if type_weight == 'Square':
weights = tf.reciprocal(tf.square(ref_vol))
elif type_weight == 'Simple':
weights = tf.reciprocal(ref_vol)
elif type_weight == 'Uniform':
weights = tf.ones_like(ref_vol)
else:
raise ValueError("The variable type_weight \"{}\""
"is not defined.".format(type_weight))
new_weights = tf.where(tf.is_inf(weights), tf.zeros_like(weights), weights)
weights = tf.where(tf.is_inf(weights), tf.ones_like(weights) *
tf.reduce_max(new_weights), weights)
generalised_dice_numerator = \
2 * tf.reduce_sum(tf.multiply(weights, intersect))
generalised_dice_denominator = \
tf.reduce_sum(tf.multiply(weights, seg_vol + ref_vol)) + 1e-6
generalised_dice_score = \
generalised_dice_numerator / generalised_dice_denominator
return 1 - generalised_dice_score
However, when I try to train the model using this loss function, the following error is raised:
ValueError: An operation has None for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.
This does not happen with any other loss functions I try to implement. Does anybody know how to address this issue? As far as I can tell, no non-differentiable operators are present in the code.
Similar issue with keras (custom layers and/or models), solution was to build the layers in the def init() before using them in call()