I am coding a Gaussian Process regression algorithm. Here is the code:
% Data generating function
fh = @(x)(2*cos(2*pi*x/10).*x);
% range
x = -5:0.01:5;
N = length(x);
% Sampled data points from the generating function
M = 50;
selection = boolean(zeros(N,1));
j = randsample(N, M);
% mark them
selection(j) = 1;
Xa = x(j);
% compute the function and extract mean
f = fh(Xa) - mean(fh(Xa));
sigma2 = 1;
% computing the interpolation using all x's
% It is expected that for points used to build the GP cov. matrix, the
% uncertainty is reduced...
K = squareform(pdist(x'));
K = exp(-(0.5*K.^2)/sigma2);
% upper left corner of K
Kaa = K(selection,selection);
% lower right corner of K
Kbb = K(~selection,~selection);
% upper right corner of K
Kab = K(selection,~selection);
% mean of posterior
m = Kab'*inv(Kaa+0.001*eye(M))*f';
% cov. matrix of posterior
D = Kbb - Kab'*inv(Kaa + 0.001*eye(M))*Kab;
% sampling M functions from from GP
[A,B,C] = svd(Kaa);
F0 = A*sqrt(B)*randn(M,M);
% mean from GP using sampled points
F0m = mean(F0,2);
F0d = std(F0,0,2);
%%
% put together data and estimation
F = zeros(N,1);
S = zeros(N,1);
F(selection) = f' + F0m;
S(selection) = F0d;
% sampling M function from posterior
[A,B,C] = svd(D);
a = A*sqrt(B)*randn(N-M,M);
% mean from posterior GPs
Fm = m + mean(a,2);
Fmd = std(a,0,2);
F(~selection) = Fm;
S(~selection) = Fmd;
%%
figure;
% show what we got...
plot(x, F, ':r', x, F-2*S, ':b', x, F+2*S, ':b'), grid on;
hold on;
% show points we got
plot(Xa, f, 'Ok');
% show the whole curve
plot(x, fh(x)-mean(fh(x)), 'k');
grid on;
I expect to get some nice figure where the uncertainty of unknown data points would be big and around sampled data points small. I got an odd figure and even odder is that the uncertainty around sampled data points is bigger than on the rest. What am I doing wrong?
There are a few things wrong with your code. Here are the most important points:
The major mistake that makes everything go wrong is the indexing of
f
. You are definingXa = x(j)
, but you should actually doXa = x(selection)
, so that the indexing is consistent with the indexing you use on the kernel matrixK
.Subtracting the sample mean
f = fh(Xa) - mean(fh(Xa))
does not serve any purpose, and makes the circles in your plot be off from the actual function. (If you choose to subtract something, it should be a fixed number or function, and not depend on the randomly sampled observations.)You should compute the posterior mean and variance directly from
m
andD
; no need to sample from the posterior and then obtain sample estimates for those.Here is a modified version of the script with the above points fixed.
A resulting plot from this with 5 randomly chosen observations, where the true function is shown in black, the posterior mean in blue, and confidence intervals in green.