Is this concept possible to be implemented with the GAN algorithm?
I want the GAN to generate a regression-output(G-Value) of the shape(4,) by the real-image, not from the random noise, and discriminate G-Value
with real regression-value(R-Value
) of the same shape(4, ). R-Value
is of the "y-train" dataset.
It means that if an image has a pattern like circular, it generally has the 4
features of position x, y, z, and alpha. I call it Real-Value(R-Value
) and I want the GAN
to generate fake value (G-Value
) fooling the discriminator.
I have tried to implement it as below.
class UTModel:
def __init__(self):
optimizer__ = Adam(2e-4)
self.__dropout = .3
self.optimizerGenerator = Adam(1e-4)
self.optimizerDiscriminator = Adam(1e-4)
self.generator, self.discriminator = self.build()
def build(self):
# build the generator
g = Sequential()
g.add(Conv2D(512, kernel_size=3, strides=2, input_shape=(128, 128, 1), padding='same'))
g.add(BatchNormalization(momentum=0.8))
g.add(LeakyReLU(alpha=0.2))
g.add(Dropout(self.__dropout))
g.add(Conv2D(256, kernel_size=3, strides=2, padding='same'))
g.add(BatchNormalization(momentum=0.8))
g.add(LeakyReLU(alpha=0.2))
g.add(Dropout(self.__dropout))
g.add(Conv2D(128, kernel_size=3, strides=2, padding='same'))
g.add(BatchNormalization(momentum=0.8))
g.add(LeakyReLU(alpha=0.2))
g.add(Dropout(self.__dropout))
g.add(Conv2D(64, kernel_size=3, strides=1, padding='same'))
g.add(BatchNormalization(momentum=0.8))
g.add(LeakyReLU(alpha=0.2))
g.add(Dropout(self.__dropout))
g.add(Flatten())
g.add(Dense(4, activation='linear'))
# build the discriminator
d = Sequential()
d.add(Dense(128, input_shape=(4,)))
d.add(LeakyReLU(alpha=0.2))
d.add(Dropout(self.__dropout))
d.add(Dense(64))
d.add(LeakyReLU(alpha=0.2))
d.add(Dropout(self.__dropout))
d.add(Dense(64))
d.add(LeakyReLU(alpha=0.2))
d.add(Dropout(self.__dropout))
d.add(Dense(32))
d.add(LeakyReLU(alpha=0.2))
d.add(Dropout(self.__dropout))
d.add(Dense(1, activation='sigmoid'))
return g, d
def computeLosses(self, rValid, fValid):
bce = BinaryCrossentropy(from_logits=True)
# Discriminator loss
rLoss = bce(tf.ones_like(rValid), rValid)
fLoss = bce(tf.zeros_like(fValid), fValid)
dLoss = rLoss + fLoss
# Generator loss
gLoss = bce(tf.zeros_like(fValid), fValid)
return dLoss, gLoss
def train(self, images, rValues):
with tf.GradientTape() as gTape, tf.GradientTape() as dTape:
gValues = self.generator(images, training=True)
rValid = self.discriminator(rValues, training=True)
fValid = self.discriminator(gValues, training=True)
dLoss, gLoss = self.computeLosses(rValid, fValid)
dGradients = dTape.gradient(dLoss, self.discriminator.trainable_variables)
gGradients = gTape.gradient(gLoss, self.generator.trainable_variables)
self.optimizerDiscriminator.apply_gradients(zip(dGradients, self.discriminator.trainable_variables))
self.optimizerGenerator.apply_gradients(zip(gGradients, self.generator.trainable_variables))
print (dLoss, gLoss)
class UTTrainer:
def __init__(self):
self.env = 3DPatterns()
self.model = UTModel()
def start(self):
if not self.env.available:
return
batch = 32
for epoch in range(1):
# set new episod
while self.env.setEpisod():
for i in range(0, self.env.episodelen, batch):
self.model.train(self.env.episode[i:i+batch], self.env.y[i:i+batch])
But the G-Values
have not generated as valid values. It converges the 1 or -1 always. The proper value should be like [-0.192798, 0.212887, -0.034519, -0.015000]
. Please help me to find the right way.
Thank you.