I want to use Gabor filters as a kernel in CNN, but I can't find a solution. Something I find but doesn't work.
import tensorflow as tf
import cv2
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization
from tensorflow.keras.layers import Activation, Flatten, Dropout, Conv2DTranspose, LeakyReLU, Concatenate, Lambda
from tensorflow.keras import backend as K
def get_gabor_tensor(ksize, sigmas, thetas, lambdas, gammas, psis):
n_kernels = len(sigmas) * len(thetas) * len(lambdas) * len(gammas) * len(psis)
gabors = []
for sigma in sigmas:
for theta in thetas:
for lambd in lambdas:
for gamma in gammas:
for psi in psis:
params = {'ksize': ksize, 'sigma': sigma,
'theta': theta, 'lambd': lambd,
'gamma': gamma, 'psi': psi}
gf = cv2.getGaborKernel(**params, ktype=cv2.CV_32F)
gf = K.expand_dims(gf, -1)
gabors.append(gf)
assert len(gabors) == n_kernels
print(f"Created {n_kernels} kernels.")
return K.stack(gabors, axis=-1)
def convolve_tensor(x, kernel_tensor=None):
return K.conv2d(x, kernel_tensor, padding='same')
def gabor_layer(layer, n_filters=16, kernel_size=3):
ksize=(3, 3)
sigmas = [1, 2, 3, 4]
thetas = np.linspace(0, np.pi, 4, endpoint=False)
lambdas=[8, 16, 32, 64]
psis = np.linspace(0, 2*np.pi, 2, endpoint=False)
gammas = np.linspace(1, 0, 2, endpoint=False)
tensor = get_gabor_tensor(ksize, sigmas, thetas, lambdas, gammas, psis)
x = Lambda(convolve_tensor, arguments={'kernel_tensor': tensor})(layer)
c1 = Conv2D(filters=16, kernel_size=(3, 3), padding='same')(layer)
p1 = MaxPooling2D((2, 2))(c1)
output = Dropout(0.1)(p1)
return output
And error
ValueError: Depth of output (256) is not a multiple of the number of groups (3) for 'lambda/convolution' (op: 'Conv2D') with input shapes: [?,96,96,3], [3,3,1,256].
The solution is from https://github.com/bdevans/GaborNet/blob/master/gabornet.py
Pass the Input(shape=(128,192,1)) ; i.e with Gray image. I got the same error and it got solved.