For exposure_1, I am trying to calculate and display the marginal effects of binary exposure_2 against the full model. I am unsure how to obtain these values. Once I have them, I need to translate them into tidy() format to display in my forest coefficient plot. I am also having difficulty creating this code.
Create dataframe and model
library(ggplot2)
library(dplyr)
library(marginaleffects)
# Set a random seed for reproducibility
set.seed(13)
# Number of rows in the dataframe
n <- 100
# Generate made-up data for exposures and outcome
exposure_1 <- sample(0:1, n, replace = TRUE)
exposure_2 <- sample(0:1, n, replace = TRUE)
exposure_3 <- sample(0:1, n, replace = TRUE)
# Generate made-up data for the primary outcome (assuming a binary outcome)
# The outcome could be generated based on some logic or model if needed
primary_outcome <- rbinom(n, 1, 0.3 + 0.2 * exposure_1 + 0.1 * exposure_2 - 0.1 * exposure_3)
# Generate made-up data for the community/grouping variable
enr_community <- sample(letters[1:5], n, replace = TRUE)
# Combine the generated data to create the dataframe
df <- data.frame(
exposure_1 = exposure_1,
exposure_2 = exposure_2,
exposure_3 = exposure_3,
primary_outcome = primary_outcome,
enr_community = enr_community
)
logit_model_1 <- geeglm(formula = primary_outcome ~ exposure_1*exposure_2 + exposure_3 , family = binomial, id = enr_community, corstr = "independence", data = df)
Create marginal effects (slopes) showing the estimates and 95% CIs for primary_outcome based on exposure_1 when exposure_2 is "0" and "1."
meffects <- slopes(logit_model_1,
newdata = datagrid(primary_outcome = 1,
exposure_2 = c(0, 1))) %>%
filter(term == "exposure_1")
Transfer the logit model into a forest plot. Once meffects is transformed to show the estimates/CIs in relation to the full/base model, I will need to get it into tidy() format to add here.
lcf <- logit_model_1 %>%
tidy(exponentiate = TRUE, conf.int = TRUE, conf.level = 0.95) %>%
mutate(model = "Main Result") %>%
mutate(exposure = "Exposure 1") %>%
filter(term == "exposure_1")
lcftable <- lcf |>
# round estimates and 95% CIs to 2 decimal places for journal specifications
mutate(across(
c(estimate, conf.low, conf.high, p.value),
~ str_pad(
round(.x,2),
width = 4,
pad = "0",
side = "right"
))) %>%
mutate(estimate = case_when(
estimate == "1000" ~ "1.00",
TRUE ~ estimate
)) %>%
mutate(conf.low = case_when(
conf.low == "1000" ~ "1.00",
TRUE ~ conf.low
)) %>%
mutate(conf.high = case_when(
conf.high == "2000" ~ "2.00",
TRUE ~ conf.high
)) %>%
mutate(model = fct_rev(fct_relevel(model, "Model")))
lcftable <- lcftable %>%
#convert back to characters
mutate(estimate = format(estimate, n.small = 3),
conf.low = format(conf.low, n.small = 3),
conf.high = format(conf.high, n.small = 3),
estimate_lab = paste0(estimate, " (", as.character(conf.low), " -", conf.high, ")")) |>
mutate(p.value = as.numeric(p.value)) %>%
# round p-values to two decimal places, except in cases where p < .001
mutate(p.value = case_when(
p.value < .001 ~ "<0.001",
round(p.value, 2) == .05 ~ as.character(round(p.value,3)),
p.value < .01 ~ str_pad( # if less than .01, go one more decimal place
as.character(round(p.value, 3)),
width = 4,
pad = "0",
side = "right"
),
p.value > 0.995 ~ "1.00",
TRUE ~ str_pad( # otherwise just round to 2 decimal places and pad string so that .2 reads as 0.20
as.character(round(p.value, 2)),
width = 4,
pad = "0",
side = "right"
))) %>%
mutate(estimate = as.numeric(estimate),
conf.low = as.numeric(conf.low),
conf.high = as.numeric(conf.high))
lcfplot1 <- lcftable %>%
ggplot(mapping = aes(x = estimate, xmin = conf.low, xmax = conf.high, y = model)) + #y = model rather than term
geom_pointrange() +
# scale_x_continuous(breaks = c(0, 1.0, 1.5, 2.0)) + #trans = scales::pseudo_log_trans(base = 10)
geom_vline(xintercept = 1) +
geom_point(size = 1.0) +
#adjust facet grid
facet_wrap(exposure~., ncol = 1, scale = "free_y") +
xlab("Incident Odds Ratio, IOR (95% Confidence Interval)") +
ggtitle("Associations between exposures and outcome") +
geom_text(aes(x = 3.5, label = estimate_lab), hjust = -0.5, size = 3) +
geom_text(aes(x = 2.5, label = p.value), hjust = -3.5, size = 3) +
coord_cartesian(xlim = c(-0.1, 7.0)) +
scale_x_continuous(trans = "pseudo_log", breaks = c(-1.0, 0, 1.0, 2.0, 5.0)) +
theme(panel.background = element_blank(),
panel.spacing = unit(1, "lines"),
panel.border = element_rect(fill = NA, color = "white"),
strip.background = element_rect(colour="white", fill="white"),
strip.placement = "outside",
text = element_text(size = 12),
strip.text = element_text(face = "bold.italic", size = 11, hjust = 0.33), #element_blank(),
plot.title = element_text(face = "bold", size = 13, hjust = -11, vjust = 4),
axis.title.x = element_text(size = 10, vjust = -1, hjust = 0.05),
axis.title.y = element_blank(),
panel.grid.major.x = element_line(color = "#D3D3D3",
size = 0.3, linetype = 2),
plot.margin = unit(c(1, 3, 0.5, 0.5), "inches")) +
geom_errorbarh(height = 0)
I am not sure this is exactly what you want, because you do not define the specific statistical quantities that are required, and you do not describe the final plot that you want. Also, your code example is very complicated and not replicable (ex: fails to load the
geepack
package.)But hopefully this helps: