The question I have is similar to the problem found here: https://www.geeksforgeeks.org/find-size-of-the-largest-formed-by-all-ones-in-a-binary-matrix/
The difference is the '+' must have all other cells in the matrix to be zeros. For example:
00100
00100
11111
00100
00100
This will be a 5x5 matrix with 2 '+', one inside another.
Another example:
00010000
00010000
00010000
11111111
00010000
00010010
00010111
00010010
This matrix is 8x8, and will have 3 '+', one of it is the small 3x3 matrix in the bottom right, and the other 2 is formed from the 5x5 matrix, one inside another, similar to the first example.
Using the code from the link above, I can only get so far:
M = [[0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 1, 1, 1], [0, 0, 0, 1, 0, 0, 1, 0]]
R = len(M)
N = len(M)
C = len(M[0])
left = [[0 for k in range(C)] for l in range(R)]
right = [[0 for k in range(C)] for l in range(R)]
top = [[0 for k in range(C)] for l in range(R)]
bottom = [[0 for k in range(C)] for l in range(R)]
for i in range(R):
top[0][i] = M[0][i]
bottom[N - 1][i] = M[N - 1][i]
left[i][0] = M[i][0]
right[i][N - 1] = M[i][N - 1]
for i in range(R):
for j in range(1,R):
if M[i][j] == 1:
left[i][j] = left[i][j - 1] + 1
else:
left[i][j] = 1
if (M[j][i] == 1):
top[j][i] = top[j - 1][i] + 1
else:
top[j][i] = 0
j = N - 1 - j
if (M[j][i] == 1):
bottom[j][i] = bottom[j + 1][i] + 1
else:
bottom[j][i] = 0
if (M[i][j] == 1):
right[i][j] = right[i][j + 1] + 1
else:
right[i][j] = 0
j = N - 1 - j
n = 0
for i in range(N):
for j in range(N):
length = min(top[i][j], bottom[i][j], left[i][j], right[i][j])
if length > n:
n = length
print(n)
Currently, it returns the output of the longest side of the '+'. The desired output would be the number of '+' in the square matrix.
I am having trouble checking for all other cells in the matrix to be zeros, and finding a separate '+' if there is one in the entire matrix.
Any help is greatly appreciated.
I don't want to spoil the fun of solving this problem, so rather than a solution, here are some hints:
Here are some minor remarks: The algorithm that this leads to runs in polynomial time (in the dimension of the input matrix), so basically it shouldn't take to long. I haven't thought about it too much, but probably the algorithm can be made more efficient. Also, you should maybe think about whether or not you count a '1' that is surrounded by '0's as a '+' or not.