I need a algorithm for find the longest weighted path in a directed, acyclic graph networkx.MultiDiGraph()
. My graph has weighted edges and many edges have a null value as the weighting. In networkx doc I have found nothing for solve this problem. My graph has the following structure:
>>> print graph.nodes()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 25, 26, 'end']
>>> print graph.edges()
[(0, 'end'), (1, 0), (1, 10), (1, 5), (2, 1), (2, 11), (2, 6), (3, 2), (3, 12), (3, 7), (4, 8), (4, 3), (4, 13), (5, 'end'), (6, 5), (6, 15), (7, 16), (7, 6), (8, 17), (8, 7), (10, 'end'), (11, 10), (11, 20), (11, 15), (12, 16), (12, 11), (12, 21), (13, 17), (13, 12), (13, 22), (15, 'end'), (16, 25), (16, 15), (17, 16), (17, 26), (20, 'end'), (21, 25), (21, 20), (22, 26), (22, 21), (25, 'end'), (26, 25)]
>>> print graph.edge[7][16]
{1: {'weight': 100.0, 'time': 2}}
>>> print graph.edge[7][6]
{0: {'weight': 0, 'time': 2}}
I find this her, but I have problems with the implementation:
- networkx: efficiently find absolute longest path in digraph this solution is without weightings.
- How to find the longest path with Python NetworkX? This solution transformed the weightings into negativ values, but my graph has null values… and the
nx.dijkstra_path()
does not support negative values.
Have anyone an idea or a solution to a similar problem found?
Take the solution in the link
1
and change the line:To something like: