So, Dani in his slightly new video -> "Making a Game, But I Only Have 3 Days" (https://youtu.be/S7Dl6ATRK2M) made a enemy which has a bow and arrow (at 5:39). I tried to recreate that but had no luck... I also can't find the website that he used... Today I found this https://physics.stackexchange.com/questions/56265/how-to-get-the-angle-needed-for-a-projectile-to-pass-through-a-given-point-for-t. It worked very well but still had problems if the target was far away and also it wasn't as accurate. The code so far is
float CalculateAngle()
{
float gravity = Physics.gravity.magnitude;
float deltaX = targetPositionMod.x - currentPosition.x;
float deltaY = targetPositionMod.y - currentPosition.y;
float RHSFirstPart = (velocity * velocity) / (gravity * deltaX);
float RHSSecondPart = Mathf.Sqrt(
((velocity * velocity) * ((velocity * velocity) - (2 * gravity * deltaY))
/ (gravity * gravity * deltaX * deltaX))
- 1);
float tanθ = RHSFirstPart - RHSSecondPart;
float angle = Mathf.Atan2(tanθ, 1) * Mathf.Rad2Deg;
if (angle < 0) return angle;
return -angle;
}
The -angle is because the forward axis starts points up when the x-rotation is negative (Unity). Maybe the reason of this not working as intended is that I am not that good at this kind of Physics (Part of that is me being only 14). Maybe the problem is in the code, maybe it is the formula. Any help is appreciated.
Thanks...
Edit: The Archer class is:
using UnityEngine;
using System;
public class Archer : MonoBehaviour
{
[SerializeField] float velocity = default;
[SerializeField] Transform target = default;
[SerializeField] GameObject arrowPrefab = default;
[SerializeField] float coolDown = default;
Vector3 targetPositionMod;
Vector3 currentPosition;
Vector3 targetPosition;
float countDown = 0f;
void Start()
{
countDown = coolDown;
UpdateVariables();
}
void Update()
{
UpdateVariables();
SetAngle();
ShootBullet();
}
void UpdateVariables()
{
currentPosition = transform.position;
targetPositionMod = Mod(target.position);
targetPosition = target.position;
targetPosition.x /= 10;
targetPosition.y /= 10;
targetPosition.z /= 10;
countDown -= Time.deltaTime;
}
void SetAngle()
{
Vector3 direction = targetPosition - currentPosition;
Quaternion lookRotation = Quaternion.LookRotation(direction);
Vector3 rotation = lookRotation.eulerAngles;
rotation.x = (float) CalculateAngle();
transform.rotation = Quaternion.Euler(rotation.x, rotation.y, 0f);
}
void ShootBullet()
{
if (!(countDown <= 0f)) return;
countDown = coolDown;
GameObject arrow = Instantiate(arrowPrefab, transform.position, transform.rotation);
Rigidbody Rigidbody = arrow.GetComponent<Rigidbody>();
Rigidbody.AddForce(transform.forward * velocity, ForceMode.Impulse);
}
double CalculateAngle()
{
double gravity = Physics.gravity.magnitude;
double deltaX = targetPositionMod.x - currentPosition.x;
double deltaY = targetPositionMod.y - currentPosition.y;
double RHSFirstPart = (velocity * velocity) / (gravity * deltaX);
double RHSSecondPart = Math.Sqrt(
(((velocity * velocity) * ((velocity * velocity) - (2 * gravity * deltaY))
/ (gravity * gravity * deltaX * deltaX))
- 1));
double tanθ = RHSFirstPart - RHSSecondPart;
double angle = Math.Atan2(tanθ, 1) * Mathf.Rad2Deg;
if (angle < 0) return angle;
return -angle;
}
Vector3 Mod(Vector3 Vec)
{
if (Vec.x < 0) Vec.x -= 2 * Vec.x;
if (Vec.y < 0) Vec.y -= 2 * Vec.y;
if (Vec.z < 0) Vec.z -= 2 * Vec.z;
Vec.x /= 10;
Vec.y /= 10;
Vec.z /= 10;
return Vec;
}
}
Ok, as I can see, your implementation of formula from StackExchange is right, but you have to remember two things:
pos1.x - pos2.x
, butMathf.Sqrt( deltaX * deltaX + deltaZ * deltaZ )
, wheredeltaX = targetPositionMod.x - currentPosition.x
anddeltaZ = targetPositionMod.z - currentPosition.z
double
instead offloat
or find another implementation for arctangent function (I think, this can really help). But try this (second) advice only if first didn't help. It's harder to implement and it slows computations a bit.