My CPU is little endian, which documentation has told me conforms to the byte-order of the FAT specification. Why then, am I getting a valid address for the BS_jmpBoot, bytes 0-3 of first sector, but not getting a valid number for BPB_BytesPerSec, bytes 11-12 of the first sector.
116 int fd = open (diskpath, O_RDONLY, S_IROTH);
117
118 read (fd, BS_jmpBoot, 3);
119 printf("BS_jmpBoot = 0x%02x%02x%02x\n", BS_jmpBoot[0], S_jmpBoot[1], S_jmpBoot[2]);
120
121 read (fd, OEMName, 8);
122 OEMName[8] = '\0';
123 printf("OEMName = %s\n", OEMName);
124
125 read (fd, BPB_BytesPerSec, 2);
126 printf("BPB_BytesPerSec = 0x%02x%02x\n",BPB_BytesPerSec[0], BPB_BytesPerSec[1]);
Yields
BS_jmpBoot = 0xeb5890 //valid address, while 0x9058eb would not be
OEMName = MSDOS5.0
BPB_BytesPerSec = 0x0002 //Should be 0x0200
I would like figure out why BS_jmpBoot and OEMName print valid but BPB_BytesPerSec does not. If anyone could enlighten me I would be greatly appreciative.
Thanks
EDIT: Thanks for the help everyone, it was my types that were making everything go awry. I got it to work by writing the bytes to an unsigned short, as uesp suggested(kinda), but I would still like to know why this didn't work:
unsigned char BPB_BytesPerSec[2];
...
125 read (fd, BPB_BytesPerSec, 2);
126 printf("BPB_BytesPerSec = 0x%04x\n", *BPB_BytesPerSec);
yielded BPB_BytesPerSec = 0x0000
I would like to use char arrays to allocate the space because I want to be sure of the space I'm writing to on any machine; or should I not?
Thanks again!
You are reading
BPB_BytesPerSec
incorrectly. The structure of the Bpb is (from here):The first two fields are bytes so their endianness is irrelevant (I think).
BPB_BytesPerSec
is a WORD (assuming 2 bytes) so you should define/read it like:Since when you read the bytes directly you get
00 02
, which is0x0200
in little endian, you should correctly readBPB_BytesPerSec
like this.