Failing to compute gradient in PyTorch

59 views Asked by At

I've been reading this research paper- https://arxiv.org/abs/1908.00413, and trying to implement the code from GitHub- https://github.com/hoyeoplee/MeLU, however, I run into a runtime error while training the model. Can anyone suggest the possible reasons that can cause this error? enter image description here

The model training code is as follows-

def training(melu, total_dataset, batch_size, num_epoch, model_save=True, model_filename=None):
    if config['use_cuda']:
        melu.cuda()

    training_set_size = len(total_dataset)
    melu.train()
    for _ in range(num_epoch):
        random.shuffle(total_dataset)
        num_batch = int(training_set_size / batch_size)
        a,b,c,d = zip(*total_dataset)
        for i in range(num_batch):
            try:
                supp_xs = list(a[batch_size*i:batch_size*(i+1)])
                supp_ys = list(b[batch_size*i:batch_size*(i+1)])
                query_xs = list(c[batch_size*i:batch_size*(i+1)])
                query_ys = list(d[batch_size*i:batch_size*(i+1)])
            except IndexError:
                continue
            melu.global_update(supp_xs, supp_ys, query_xs, query_ys, config['inner'])

    if model_save:
        torch.save(melu.state_dict(), model_filename)

And the code for global update is as follows-

def global_update(self, support_set_xs, support_set_ys, query_set_xs, query_set_ys, num_local_update):
        batch_sz = len(support_set_xs)
        losses_q = []
        if self.use_cuda:
            for i in range(batch_sz):
                support_set_xs[i] = support_set_xs[i].cuda()
                support_set_ys[i] = support_set_ys[i].cuda()
                query_set_xs[i] = query_set_xs[i].cuda()
                query_set_ys[i] = query_set_ys[i].cuda()
        for i in range(batch_sz):
            query_set_y_pred = self.forward(support_set_xs[i], support_set_ys[i], query_set_xs[i], num_local_update)
            loss_q = F.mse_loss(query_set_y_pred, query_set_ys[i].view(-1, 1))
            losses_q.append(loss_q)
        losses_q = torch.stack(losses_q).mean(0)
        self.meta_optim.zero_grad()
        losses_q.backward()
        self.meta_optim.step()
        self.store_parameters()
        return

0

There are 0 answers