Exporting DataFrames to HTML using PyScript

107 views Asked by At

I'm working on this project where I've got some dataframes and plots. I've got the plots all sorted out, but now I'm trying to figure out how to show the tabular dataframes and maybe add a download button for them. I can't decide if I should bundle them in a zip file or give each one a separate download button. I tried using Panel, but it's kinda slow, and the Python script examples I found aren't working for me. Another idea I had was to save the dataframes as JSON and use some JavaScript magic, but I'm not really a JavaScript pro like I am with Python. If you've got any thoughts, advice, or maybe even some code examples to help me out, I'd really appreciate it.

Here is my code if it's needed:

<!DOCTYPE html>
<html lang="en">

<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Document</title>
    <link rel="stylesheet" href="https://pyscript.net/latest/pyscript.css" />
    <script defer src="https://pyscript.net/latest/pyscript.js"></script>
    <link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet"
        integrity="sha384-T3c6CoIi6uLrA9TneNEoa7RxnatzjcDSCmG1MXxSR1GAsXEV/Dwwykc2MPK8M2HN" crossorigin="anonymous">
    <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"
        integrity="sha384-C6RzsynM9kWDrMNeT87bh95OGNyZPhcTNXj1NW7RuBCsyN/o0jlpcV8Qyq46cDfL"
        crossorigin="anonymous"></script>
</head>

<body>

    <py-config>
        packages = ['pandas', 'matplotlib', 'numpy']
    </py-config>

    <div class="container">

        <h1>Resultados del Test</h1>

        <!--Script Python-->
        <py-script>
            import pandas as pd
            import matplotlib.pyplot as plt
            import numpy as np
            from js import location, URLSearchParams
            import json

            urlParams = URLSearchParams.new(location.search)
            userDataJSON = urlParams.get('respuestas')

            userData = json.loads(userDataJSON)

            electricity_data = userData["electricityResponses"]["records"]
            df_electricity = pd.DataFrame(electricity_data)
            df_electricity = df_electricity.rename(columns={"receiptNumber": "receipt", "kWhConsumption":
            "consume_kwh"})

            df_electricity["consume_mwh"] = df_electricity["consume_kwh"] / 1000

            emissionFactorElectrity = 0.435

            df_electricity["emission_tco2"] = df_electricity["consume_mwh"] * emissionFactorElectrity
            emissionResultElectricity = df_electricity["consume_mwh"].sum() * emissionFactorElectrity

            plt.plot(df_electricity["receipt"], df_electricity["consume_mwh"])
            plt.title("Consumo anual de electricidad")
            plt.xlabel("No. de recibo bimestral")
            plt.ylabel("Consumo bimestral de electricidad (MWh)")
            display(plt)

            plt.clf()
            plt.bar(df_electricity["receipt"], df_electricity["emission_tco2"])
            plt.title("Emisión de carbono anual de electricidad")
            plt.xlabel("Consumo de electricidad bimestral (MWh)")
            plt.ylabel("Emisión bimestral de carbono (tco2)")
            display(plt)

            water_data = userData["waterResponses"]["records"]
            df_water = pd.DataFrame(water_data)
            df_water = df_water.rename(columns={"receiptNumber": "receipt", "m3Consumption": "consume_m3"})

            emissionFactorWater = 0.26 / 1000

            df_water["emission_tco2"] = df_water["consume_m3"] * emissionFactorWater
            emissionResultWater = df_water["consume_m3"].sum() * emissionFactorWater

            plt.clf()
            plt.plot(df_water["receipt"], df_water["consume_m3"])
            plt.title("Consumo anual de agua")
            plt.xlabel("No. de recibo bimestral")
            plt.ylabel("Consumo bimestral de agua (m^3)")
            display(plt)

            plt.clf()
            plt.bar(df_water["receipt"], df_water["emission_tco2"])
            plt.title("Emisión de carbono anual de agua")
            plt.xlabel("Consumo de agua bimestral (m^3)")
            plt.ylabel("Emisión bimestral de carbono (tco2)")
            display(plt)

            gas_data = userData["gasResponses"]
            df_gas = pd.DataFrame([gas_data])
            df_gas = df_gas.rename(columns={"naturalGasConsumption": "consume_natural_gas", "LPGConsumption":
            "consume_lp_gas"})

            emissionFactorNaturalGas = 2.2161 / 1000
            emissionFactorLPGas = 2.5868 / 1000

            df_gas["emission_tco2_natural_gas"] = df_gas["consume_natural_gas"] * emissionFactorNaturalGas
            emissionResultNaturalGas = df_gas["consume_natural_gas"].sum() * emissionFactorNaturalGas

            df_gas["emission_tco2_lp_gas"] = df_gas["consume_lp_gas"] * emissionFactorLPGas
            emissionResultLPGas = df_gas["consume_lp_gas"].sum() * emissionFactorLPGas

            lblsGas = ["Gas Natural", "Gas LP"]

            plt.clf()
            gasVals = list(df_gas["consume_natural_gas"]) + list(df_gas["consume_lp_gas"])
            plt.pie(gasVals, labels=lblsGas, autopct="%1.1f%%")
            plt.title("Consumo anual de gas")
            display(plt)

            plt.clf()
            gasEmissionVals = list(df_gas["emission_tco2_natural_gas"]) + list(df_gas["emission_tco2_lp_gas"])
            plt.bar(lblsGas, gasEmissionVals)
            plt.title("Emisión de carbono anual de gas")
            plt.xlabel("Tipo de gas")
            plt.ylabel("Emisión de carbono (tco2)")
            display(plt)


            transport_data = userData["transportResponses"]["vehicles"]
            df_transport = pd.DataFrame(transport_data)
            df_transport["isDiesel"] = df_transport["isDiesel"].map({"true":True, "false":False})

            emissionFactorFuel = 2.953 / 1000
            emissionFactorDiesel = 3.1034 / 1000

            def calculate_emission(row):
                if not row["isDiesel"]:
                    return row["kmsDriven"] * row["efficiency"] * emissionFactorFuel
                else:
                    return row["kmsDriven"] * row["efficiency"] * emissionFactorDiesel

            df_transport["emission_tco2"] = df_transport.apply(calculate_emission, axis=1)
            emissionResultTransport = df_transport["emission_tco2"].sum()

            plt.clf()
            lblsTransport = [i for i in range(1, len(df_transport["noVehicle"])+1)]
            plt.bar(lblsTransport, df_transport["emission_tco2"])
            plt.title("Emisión de carbono anual de transporte")
            plt.xticks(lblsTransport)
            plt.xlabel("Carros")
            plt.ylabel("Emisión de carbono (tco2)")
            display(plt)

            plt.clf()
            emissionResults = [emissionResultElectricity, emissionResultNaturalGas, emissionResultLPGas,
            emissionResultWater, emissionResultTransport]
            lblsResults = ["Electricidad", "Gas Natural", "Gas LP", "Agua", "Transporte"]
            plt.figure(figsize=(10,10))
            plt.pie(emissionResults, labels=lblsResults, autopct="%1.1f%%")
            plt.title("Emisiones de carbono")
            display(plt)
        </py-script>


        <div id="electricityFactorResult"></div>
        <br>
        <div id="waterFactorResult"></div>
        <br>
        <div id="gasFactorResult"></div>
        <br>
        <div id="transportFactorResult"></div>

    </div>
</body>

</html>
0

There are 0 answers