I am developing a custom model in Tensorflow. I am trying to implement a Virtual Adversarial Training (VAT) model from https://arxiv.org/abs/1704.03976. The model makes use of both labeled and unlabeled data in its classification task. Therefore, in the train_step
of the model, I need to divide the data of the batch into labeled (0, or 1), or unlabeled (-1). It seems to work as expected when compiling the model using run_eagerly=True, but when I use run_eagerly=False, it gives me the following error:
ValueError: Number of mask dimensions must be specified, even if some dimensions are None. E.g. shape=[None] is ok, but shape=None is not.
which seems to be produced in:
X_l, y_l = tf.boolean_mask(X, tf.logical_not(missing)), tf.boolean_mask(y, tf.logical_not(missing))
I am not sure what is causing the error, but it seems to have something to do with a weird tensor shape issues that only occur during run_eagerly=False
. I need the boolean_mask
functionality in order to distinguish the labeled and unlabeled data. I hope someone can help me out. In order to reproduce the errors, I added the model, and a small simulation example. The simulation will produce the error I have, when run_eagerly=False
is set.
Thanks in advance.
Model defintion:
from tensorflow import keras
import tensorflow as tf
metric_acc = keras.metrics.BinaryAccuracy()
metric_loss = keras.metrics.Mean('loss')
class VAT(keras.Model):
def __init__(self, units_1=16, units_2=16, dropout=0.3, xi=1e-6, epsilon=2.0, alpha=1.0):
super(VAT, self).__init__()
# Set model parameters
self.units_1 = units_1
self.units_2 = units_2
self.dropout = dropout
self.xi = xi
self.epsilon = epsilon
self.alpha = alpha
# First hidden
self.dense1 = keras.layers.Dense(self.units_1)
self.activation1 = keras.layers.Activation(tf.nn.leaky_relu)
self.dropout1 = keras.layers.Dropout(self.dropout)
# Second hidden
self.dense2 = keras.layers.Dense(self.units_2)
self.activation2 = keras.layers.Activation(tf.nn.leaky_relu)
self.dropout2 = keras.layers.Dropout(self.dropout)
# Output layer
self.dense3 = keras.layers.Dense(1)
self.activation3 = keras.layers.Activation("sigmoid")
def call(self, inputs, training=None, mask=None):
x1 = self.dense1(inputs)
x2 = self.activation1(x1)
x3 = self.dropout1(x2, training=True)
x4 = self.dense2(x3)
x5 = self.activation2(x4)
x6 = self.dropout2(x5, training=True)
x7 = self.dense3(x6)
x8 = self.activation3(x7)
return x8
def generate_perturbation(self, inputs):
# Generate normal vectors
d = tf.random.normal(shape=tf.shape(inputs))
# Normalize vectors
d = tf.math.l2_normalize(d, axis=1)
# Calculate r
r = self.xi * d
# Make predictions
p = self(inputs, training=True)
# Tape gradient
with tf.GradientTape() as tape:
tape.watch(r)
# Perturbed predictions
p_perturbed = self(inputs + r, training=True)
# Calculate divergence
D = keras.losses.KLD(p, p_perturbed) + keras.losses.KLD(1 - p, 1 - p_perturbed)
# Calculate gradient
gradient = tape.gradient(D, r)
# Calculate r_vadv
r_vadv = tf.math.l2_normalize(gradient, axis=1)
# Return virtual adversarial perturbation
return r_vadv
@tf.function
def train_step(self, data):
# Unpack data
X, y = data
# Missing label boolean indices
missing = tf.squeeze(tf.equal(y, -1))
# Split data into labeled and unlabeled data
X_l, y_l = tf.boolean_mask(X, tf.logical_not(missing)), tf.boolean_mask(y, tf.logical_not(missing))
X_u = tf.boolean_mask(X, missing)
# Calculate virtual perturbations for labeled and unlabeled
r_l = self.generate_perturbation(X_l)
r_u = self.generate_perturbation(X_u)
# Tape gradient
with tf.GradientTape() as model_tape:
model_tape.watch(self.trainable_variables)
# Calculate probabilities real data
prob_l, prob_u = self(X_l, training=True), self(X_u, training=True)
# Calculate probabilities perturbed data
prob_r_l, prob_r_u = self(X_l + self.epsilon * r_l, training=True), self(X_u + self.epsilon * r_u, training=True)
# Calculate loss
loss = vat_loss(y_l, prob_l, prob_u, prob_r_l, prob_r_u, self.alpha)
# Calculate gradient
model_gradient = model_tape.gradient(loss, self.trainable_variables)
# Update weights
self.optimizer.apply_gradients(zip(model_gradient, self.trainable_variables))
# Compute metrics
metric_acc.update_state(y_l, prob_l)
metric_loss.update_state(loss)
return {'loss': metric_loss.result(), 'accuracy': metric_acc.result()}
@property
def metrics(self):
return [metric_loss, metric_acc]
def vat_loss(y_l, prob_l, prob_u, prob_r_l, prob_r_u, alpha):
N_l = tf.cast(tf.size(prob_l), dtype=tf.dtypes.float32)
N_u = tf.cast(tf.size(prob_u), dtype=tf.dtypes.float32)
if tf.equal(N_l, 0):
# No labeled examples: get contribution from unlabeled data using perturbations
R_vadv = tf.reduce_sum(
keras.losses.KLD(prob_u, prob_r_u)
+ keras.losses.KLD(1 - prob_u, 1 - prob_r_u)
)
return alpha * R_vadv / N_u
elif tf.equal(N_u, 0):
# No unlabeled examples: get contribution from labeled data
R = tf.reduce_sum(keras.losses.binary_crossentropy(y_l, prob_l))
R_vadv = tf.reduce_sum(
keras.losses.KLD(prob_l, prob_r_l)
+ keras.losses.KLD(1 - prob_l, 1 - prob_r_l)
)
return R / N_l + alpha * R_vadv / N_l
else:
# Get contribution from labeled data
R = tf.reduce_sum(keras.losses.binary_crossentropy(y_l, prob_l))
# Get contribution from labeled and unlabeled data using perturbations
R_vadv = tf.reduce_sum(
keras.losses.KLD(prob_l, prob_r_l)
+ keras.losses.KLD(1 - prob_l, 1 - prob_r_l)
) + tf.reduce_sum(
keras.losses.KLD(prob_u, prob_r_u)
+ keras.losses.KLD(1 - prob_u, 1 - prob_r_u)
)
return R / N_l + alpha * R_vadv / (N_l + N_u)
Simulation example:
To show that the model/code works as desired (when using run_eagerly=True
, I made a simulation example. In this example, I bias when observations are labeled/unlabeled. The figure below illustrates the labeled observations used by the model (yellow or purple), and the unlabeled observations (blue).
The VAT produces an accuracy of around ~0.75, whereas the reference model produces an accuracy of around ~0.58. These accuracies are produced without hyperparameter tuning.
from modules.vat import VAT
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
def create_biased_sample(x, proportion_labeled):
labeled = np.random.choice([True, False], p=[proportion_labeled, 1-proportion_labeled])
if x[0] < 0.0:
return False
elif x[0] > 1.0:
return False
else:
return labeled
# Simulation parameters
N = 2000
proportion_labeled = 0.15
# Model training parameters
BATCH_SIZE = 128
BUFFER_SIZE = 60000
EPOCHS = 100
# Generate a dataset
X, y = datasets.make_moons(n_samples=N, noise=.05, random_state=3)
X, y = X.astype('float32'), y.astype('float32')
y = y.reshape(-1, 1)
# Split in train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.5)
# Simulate missing labels
sample_biased = lambda x: create_biased_sample(x, proportion_labeled)
labeled = np.array([sample_biased(k) for k in X_train])
y_train[~ labeled] = -1
# Estimate VAT model
vat = VAT(dropout=0.2, units_1=16, units_2=16, epsilon=0.5)
vat.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01), run_eagerly=True)
vat.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, shuffle=True)
# Estimate a reference model
reference = keras.models.Sequential([
keras.layers.Input(shape=(2,)),
keras.layers.Dense(16),
keras.layers.Activation(tf.nn.leaky_relu),
keras.layers.Dropout(0.2),
keras.layers.Dense(16),
keras.layers.Activation(tf.nn.leaky_relu),
keras.layers.Dropout(0.2),
keras.layers.Dense(1),
keras.layers.Activation("sigmoid")
])
reference.compile(optimizer=keras.optimizers.Adam(learning_rate=0.01), loss=keras.losses.binary_crossentropy, run_eagerly=False)
reference.fit(X_train[y_train.flatten() != -1, :], y_train[y_train.flatten() != -1], batch_size=BATCH_SIZE, epochs=EPOCHS, shuffle=True)
# Calculate out-of-sample accuracies
test_acc_vat = tf.reduce_mean(keras.metrics.binary_accuracy(y_test, vat(X_test, training=False)))
test_acc_reference = tf.reduce_mean(keras.metrics.binary_accuracy(y_test, reference(X_test, training=False)))
# Print results
print('Test accuracy of VAT: {}'.format(test_acc_vat))
print('Test accuracy of reference model: {}'.format(test_acc_reference))
# Plot scatter
plt.scatter(X_test[:, 0], X_test[:, 1])
plt.scatter(X_train[y_train.flatten() != -1, 0], X_train[y_train.flatten() != -1, 1], c=y_train.flatten()[y_train.flatten() != -1])
For anyone who is interested, I solved the issue by adding the following in the
train_step()
method:It should be just after declaring the tensor
missing
. I solved this using this thread: Tensorflow boolean_mask with dynamic mask.