Please I'm trying different Econml tree based causal estimators yet I get this error for example with grf.CausalForest or grf.RegressionForest or grf.CausalIVForest,PolicyForest
model= CausalModel(
data = GE_Profile_WGS,
treatment='State',
outcome='TargetGene',
common_causes=GE_Profile_WGS.columns.to_list()[2:len(GE_Profile_WGS.columns)]
)
dml_estimate = model.estimate_effect(identified_estimand,method_name="backdoor.econml.grf.RegressionForest",
method_params={"init_params":{
'n_estimators':200,},
"fit_params":{}})
---> 63 dml_estimate = model.estimate_effect(identified_estimand, method_name="backdoor.econml.grf.CausalIVForest",
64 method_params={"init_params":{
65 'n_estimators':200,
2 frames
/usr/local/lib/python3.10/dist-packages/dowhy/causal_estimators/econml.py in fit(self, data, effect_modifier_names, **kwargs)
192 arg: named_data_args[arg] for arg in named_data_args.keys() if arg in estimator_named_args
193 }
--> 194 self.estimator.fit(**estimator_data_args, **kwargs)
195
196 return self
TypeError: CausalIVForest.fit() missing 1 required positional argument: 'y'
I'm trying to calculate the estimate like I did with all the Meta-Learners but there is something weird about the tree based, also I get this error with some other estimators like ForestDRIV, CausalForestDML, ForestDRLearner
dml_estimate = model.estimate_effect(identified_estimand, method_name="backdoor.econml.dr.ForestDRLearner",
64 method_params={"init_params":{
65 #'n_estimators':200,
3 frames
/usr/local/lib/python3.10/dist-packages/econml/dr/_drlearner.py in fit(self, Y, T, X, W, sample_weight, groups, cache_values, inference)
1650 """
1651 if X is None:
-> 1652 raise ValueError("This estimator does not support X=None!")
1653
1654 return super().fit(Y, T, X=X, W=W,
ValueError: This estimator does not support X=None!