I am making a project in Java where i have to use BigInteger class to implement an encryption method.
I have square matrices nxn where n can be 200 and i need to calculate the determinant. I did the method using the determinant of submatrices but its taking forever to calculate.
public BigInteger determinant(Matrix matrix){
if (matrix.getColumns()!=matrix.getRows()){
System.out.println("The matrix is not square");
return BigInteger.valueOf(-1);
}
if (matrix.getColumns() == 1) {
return matrix.getMatrix()[0][0];
}
if (matrix.getRows()==2) {
return ((matrix.getValueAt(0, 0).multiply(matrix.getValueAt(1, 1)))).subtract(( matrix.getValueAt(0, 1).multiply(matrix.getValueAt(1, 0))));
}
BigInteger sum = BigInteger.valueOf(0);
for (int i=0; i<matrix.getColumns(); i++) {
sum = sum.add(this.changeSign(BigInteger.valueOf(i)).multiply(matrix.getValueAt(0, i)).multiply(determinant(createSubMatrix(matrix, 0, i))));// * determinant(createSubMatrix(matrix, 0, i));
}
return sum;
}
Is there a non-recursive way to calculate the determinant?
Thanks in advance.
A common practice of calculating the deterninat of huge matrices is the use an LUP decomposition. In this case, the decerminant can be calculated with following ideas:
This is how big math packages do that. You should probably implement LU by yourself.