This DCGAN PyTorch code is designed for image of size 6464, and i modified the code for generator and discriminator for 256256, also the batch size is given as 64
# Training Loop
# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0
generator = Generator(ngpu)
discriminator = Discriminator(ngpu)
print("Starting Training Loop...")
# For each epoch
for epoch in range(num_epochs):
# For each batch in the dataloader
for i, data in enumerate(dataloader, 0):
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
## Train with all-real batch
netD.zero_grad()
# Format batch
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
# Forward pass real batch through D
output = netD(real_cpu).view(-1)
# Calculate loss on all-real batch
errD_real = criterion(output, label)
# Calculate gradients for D in backward pass
errD_real.backward()
D_x = output.mean().item()
## Train with all-fake batch
# Generate batch of latent vectors
noise = torch.randn(b_size, nz, 1, 1, device=device)
# Generate fake image batch with G
fake = netG(noise)
label.fill_(fake_label)
# Classify all fake batch with D
output = netD(fake.detach()).view(-1)
# Calculate D's loss on the all-fake batch
errD_fake = criterion(output, label)
# Calculate the gradients for this batch, accumulated (summed) with previous gradients
errD_fake.backward()
D_G_z1 = output.mean().item()
# Compute error of D as sum over the fake and the real batches
errD = errD_real + errD_fake
# Update D
optimizerD.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.fill_(real_label) # fake labels are real for generator cost
# Since we just updated D, perform another forward pass of all-fake batch through D
output = netD(fake).view(-1)
# Calculate G's loss based on this output
errG = criterion(output, label)
# Calculate gradients for G
errG.backward()
D_G_z2 = output.mean().item()
# Update G
optimizerG.step()
# Output training stats
if i % 50 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
# Save Losses for plotting later
G_losses.append(errG.item())
D_losses.append(errD.item())
# Check how the generator is doing by saving G's output on fixed_noise
if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
iters += 1
torch.save(discriminator.state_dict(),
"%s/discriminator_epoch_%03d.pth" % ('/content/output/pth_model', epoch))
torch.save(generator.state_dict(),
"%s/generator_epoch_%03d.pth" % ('/content/output/pth_model', epoch))
I tried to give image of size if size 256256 and the model was optimized for 6464, somehow i modified Generator and Discriminator, also, I'm getting error in training loop like:
Starting Training Loop...
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-22-44ba20a42bdc> in <cell line: 12>()
26 output = netD(real_cpu).view(-1)
27 # Calculate loss on all-real batch
---> 28 errD_real = criterion(output, label)
29 # Calculate gradients for D in backward pass
30 errD_real.backward()
3 frames
/usr/local/lib/python3.10/dist-packages/torch/nn/functional.py in binary_cross_entropy(input, target, weight, size_average, reduce, reduction)
3111 reduction_enum = _Reduction.get_enum(reduction)
3112 if target.size() != input.size():
-> 3113 raise ValueError(
3114 "Using a target size ({}) that is different to the input size ({}) is deprecated. "
3115 "Please ensure they have the same size.".format(target.size(), input.size())
ValueError: Using a target size (torch.Size([64])) that is different to the input size (torch.Size([10816])) is deprecated. Please ensure they have the same size.