I haven't seen this specific scenario in my research for this error in Numba. This is my first time using the package so it might be something obvious.
I have a function that calculates engineered features in a data set by adding, multiplying and/or dividing each column in a dataframe called data and I wanted to test whether numba would speed it up
@jit
def engineer_features(engineer_type,features,joined):
#choose which features to engineer (must be > 1)
engineered = features
if len(engineered) > 1:
if 'Square' in engineer_type:
sq = data[features].apply(np.square)
sq.columns = map(lambda s:s + '_^2',features)
for c1,c2 in combinations(engineered,2):
if 'Add' in engineer_type:
data['{0}+{1}'.format(c1,c2)] = data[c1] + data[c2]
if 'Multiply' in engineer_type:
data['{0}*{1}'.format(c1,c2)] = data[c1] * data[c2]
if 'Divide' in engineer_type:
data['{0}/{1}'.format(c1,c2)] = data[c1] / data[c2]
if 'Square' in engineer_type and len(sq) > 0:
data= pd.merge(data,sq,left_index=True,right_index=True)
return data
When I call it with lists of features, engineer_type and the dataset:
engineer_type = ['Square','Add','Multiply','Divide']
df = engineer_features(engineer_type,features,joined)
I get the error: Failed at object (analyzing bytecode) 'DataFlowAnalysis' object has no attribute 'op_MAKE_FUNCTION'
Same question here. I think the problem might be the lambda function since numba does not support function creation.