with MongoDB, CouchDB and related technologies we can get faster querying so is this still valid?
“A copy of transaction data, specially restructured for queries and analyses.” (R. Kimball The Data Warehouse Toolkit, 1996
I mean, do we really need to restructure our data to an OLAP scheme to query it for analysis purposes? More specifically can drill-down, slice and dice and other reporting for analysis purposes be achieved with NoSQL (NOT necessarily with OLAP modelling)? Also could we overcome the "data subset" querying limitation of OLAP and report on the whole data universe with NoSQL?
In my estimation OLAP subsets or structures will not go away and may become more common for a few reasons. In no particular order: f) Map-reduce is all you get in many cases. Mongodb is on a steadier foot with their speedier aggregation-pipeline; u) A big gotcha with NoSQL is the lack of joins or relationships. Meaning that your underlying data has to be ugly in order to support many OLAP reports; b) Its worthwhile constructing 'throw away' or volatile data subsets simply to keep a clean master table/collection; a) NoSQL is perfectly suited for redundant datasets: there are no create table or even schemas needed, its dead simple to spin up and kill collections; r) NoSQL is heaps easier to scale for the additional dataset than SQL; d) A fledgling start-up can avoid the cost and resources needed to support two db technologies ( one for OLAP and one for OLTP ); and, b) you'll find your backend / frontend code much much much easier and manageable with massaged data sets; and, c) the unbeatable speed advantage of premade datasets with their own premade indices.