and I want to apply data augmentation to my dataset using pytorch and I am working with the faceLandmarks dataset in th official pytorch exemple and instead of making transformation on the fly at every epoch I want make additional data lets say the original one and the transformed one and use both of them for the training I saw an exemple suggesting creating different training loops But I got confused how to do it this is what I tried
class FaceLandmarksDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
"""
Arguments:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.landmarks_frame = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
self.transform = transforms.Compose([Rescale,
RandomCrop,
ToTensor()])
img_name = os.path.join(self.root_dir,
self.landmarks_frame.iloc[idx, 0])
image = io.imread(img_name)
landmarks = self.landmarks_frame.iloc[idx, 1:]
landmarks = np.array([landmarks], dtype=float).reshape(-1, 2)
# Assign a label indicating 'none' augmentation by default
augmentation_label = 'none'
# Apply transformation if it exists and is a list with augmentation labels
if self.transform:
if isinstance(self.transform, list):
augmentation_label = self.transform[idx % len(self.transform)]
sample = {'image': image, 'landmarks': landmarks, 'augmentation_label': augmentation_label}
if self.transform and augmentation_label != 'none':
sample = self.transform(sample)
sample = {'image': image, 'landmarks': landmarks}
return sample
# dataloader for the dataset ---------------------------------
transformed_dataset =FaceLandmarksDataset(csv_file='/faces_dataset/faces/faces/face_landmarks.csv',root_dir='/faces_dataset/faces/faces/')
dataloader = DataLoader(transformed_dataset, batch_size=4,
shuffle=True, num_workers=0)
then I got confused how to proceed and how should I load the two datasets with the dataloaders. any suggestions ?