Im trying to write a simple verified implementation of the substring method. My method accepts 2 strings and checks whether str2 is in str1. Im trying to figure out firstly why my invairant doesnt hold - Dafny marks that the invariant might not hold on entry and while my pre/post conditions fail. My thoughts on the invairant are that there 3 main scenarios: 1. The loop failed to find the substring at index i and there are more indexes to explore 2. The loop failed to find the substring at index i - no more indexes to explore 3. The loop found substring at index i
Code:
method Main() {
var str1,str2 := "Dafny","fn";
var found,offset := FindSubstring(str1,str2);
assert found by
{
calc {
str2 <= str1[2..];
==>
IsSubsequenceAtOffset(str1,str2,2);
==>
IsSubsequence(str1,str2);
==
found;
}
}
assert offset == 2 by
{
assert found && str2 <= str1[2..];
assert offset != 0 by { assert 'D' == str1[0] != str2[0] == 'f'; }
assert offset != 1 by { assert 'a' == str1[1] != str2[0] == 'f'; }
assert offset != 3 by { assert 'n' == str1[3] != str2[0] == 'f'; }
assert !(offset >= 4) by { assert 4 + |str2| > |str1|; }
}
print "The sequence ";
print str2;
print " is a subsequence of ";
print str1;
print " starting at element ";
print offset;
}
predicate IsSubsequence<T>(q1: seq<T>, q2: seq<T>)
{
exists offset: nat :: offset + |q2| <= |q1| && IsSubsequenceAtOffset(q1,q2,offset)
}
predicate IsSubsequenceAtOffset<T>(q1: seq<T>, q2: seq<T>, offset: nat)
{
offset + |q2| <= |q1| && q2 <= q1[offset..]
}
predicate Inv<T>(str1: seq<T>, str2: seq<T>, offset: nat, found: bool)
{
|str1| > 0 && |str2| > 0 && |str1| >= |str2| && offset <= |str1|-|str2| &&
(!found && offset < |str1|-|str2| ==> !(str2 <= str1[offset..])) &&
(!found && offset == |str1| -|str2| ==> !IsSubsequence(str1, str2)) &&
(found ==> IsSubsequenceAtOffset(str1, str2, offset))
}
method FindSubstring(str1: string, str2: string) returns (found: bool, offset: nat)
requires |str2| <= |str1|
ensures found <==> IsSubsequence(str1,str2)
ensures found ==> IsSubsequenceAtOffset(str1,str2,offset)
{
found, offset := str2 <= str1[0..], 0;
assert Inv(str1,str2,offset,found);
while !found && offset <= (|str1| - |str2|)
invariant Inv(str1,str2,offset,found)
{
if str2 <= str1[(offset + 1)..] {
found, offset := true, offset + 1;
} else {
offset := offset + 1;
}
}
Lemma(str1,str2,found,offset);
}
lemma Lemma(str1: string, str2: string, found: bool, offset: nat)
requires !(!found && offset <= (|str1| - |str2|))
requires Inv(str1,str2,offset,found)
ensures found <==> IsSubsequence(str1,str2)
ensures found ==> IsSubsequenceAtOffset(str1,str2,offset)
{}
Link: http://rise4fun.com/Dafny/QaAbU Any help would be appreciated.
http://rise4fun.com/Dafny/q9BG
1)
|str1| > 0 && |str2| > 0
ininv
was failing because this condition is not added in the requirement of the functionFindSubstring
2) Since while loop body in
FindSubstring
checks substring foroffset+1
, the while loop only has to run foroffset < (|str1| - |str2|)
because ifoffset == (|str1| - |str2|)
then there doesn't exist any offset which would satisfystr2 <= str1[offset..]
3) Added quantifier in
inv
which ensures that for all the offsetsk
where0 <= k <= offset
, there doesn't exist anyk
whichstr2 <= str1[offset..]
A small advice to debug the failing invariant that might help: replace the
inv
call with the actual body ofinv
and dafny will pinpoint the failing condition in the invariant.Hope this makes sense.