I am using k-fold cross validation with k = 10. Thus, I have 10 ROC curves. I would like to average between the curves. I can't just average the values on the Y axes (using perfcurve) because the vectors returned are not the same size.
[X1,Y1,T1,AUC1] = perfcurve(t_test(1),resp(1),1);
.
.
.
[X10,Y10,T10,AUC10] = perfcurve(t_test(10),resp(10),1);
How to solve this? How can I plot the average curve of the 10 ROC curves?
I solved it using Matlab's perfcurve. For that, I had to pass as a parameter a list of vectors (size vectors 1xn) for "label" and "scores". Thus, the perfcurve function already understands as a set of resolutions made using k-fold and returns the average ROC curve and its confidence interval, in addition to the AUC and its confidence interval.
[X1,Y1,T1,AUC1] = perfcurve(t_test_list,resp_list,1);
t_test and resp they are lists of size 1xk (k is the number of folds / k-fold) and each element of the lists is a 1xn vector with scores and labels.
resp has 2xn format (n is the number of predicted samples). There are two classes.
t_test_act contains the labels of the current set of tests, it has formed 2xn and is composed of 0 and 1 (each column has a 1 and a 0, indicating the true class of the sample).