I have a function that takes in a void* buffer parameter. This function (which is provided by HDF here. From my understanding, it reads info from a dataset into the buffer. I have this working, but only if I create a 3d int array using constant values. I need to be able to do this using values passed in by the user. Here is the start of that function:
void* getDataTest(int countX, int countY)
{
int NX = countX;
int NY = countY;
int NZ = 1;
int data_out[NX][NY][NZ]; //I know this doesn't work, just posting it for reference
//.
//. more code here...
//.
// Read function is eventually called...
h5Dataset.read(data_out, H5::PredType::NATIVE_INT, memspace, h5Dataspace);
}
This constantly fails on me. However, my previoud implementation that used const int values when creating the data_out array worked fine:
void* getDataTest(int countX, int countY)
{
const int NX = 5;
const int NY = 5;
const int NZ = 1;
int data_out[NX][NY][NZ];
//.
//. more code here...
//.
// Read function is eventually called...
h5Dataset.read(data_out, H5::PredType::NATIVE_INT, memspace, h5Dataspace);
}
This works fine. From my understanding, this function (which I have no control over) requires dataspaces of the same dimensionality (e.g. a 3D array will only work with a 3D array while a 2D array will only work with a 2D array when copying over the data to the buffer).
So, my key problem here is that I can't seem to figure out how to create a 3D int array that the read function is happy with (the function parameter is a void* but I can't seem to get anything other than a 3d int array to work). I've tried a 3D int array represented as an array of arrays of arrays using:
int*** data_out = new int**[NX];
but this failed as well. Any ideas on how I can create a 3D int array of the form int arrayName[non-constant value][non-constant value][non-constant value]? I know you can't create an array using non-constant values, but I added them in an attempt to clarify my goal. Should there be a way in C++ to use function parameters as values for instantiating an array?
I think the easiest is to do this:
You can then access this 1D array as a 3D array like that:
In a more C++11 style, you can use an
std::vector
:And calling the function like that: