I want to create a dataset that has the same format as the cifar-10 data set to use with Tensorflow. It should have images and labels. Basically, I'd like to be able to take the cifar-10 code but different images and labels, and run that code. I haven't found any information on how to do this online, and am completely new to machine learning.
create a dataset that has the same format as the cifar-10 data set
2.6k views Asked by prudhvi nandan AtThere are 2 answers
I had to do this also, and made a bunch of functions to format images and a text file into a readable format for tensorflow. Here is the modifications I made to use a group of images in a folder called images (I used glob to iterate through them) and a text file with the information about the images encoded (I had a series of numbers for each image, where the numbers described where the user was directing the robot at the time each image was taken). I made a function to generate minibatches, and to create a training and test data set. I also converted the numbers I associated with each image into one-hot vectors to fit in (you can use this if you want, but may not be useful).
#!/usr/bin/python
import cv2
import numpy as np
import tensorflow as tf
import glob
import re
import random
# Parameters
learning_rate = 0.001
training_iters = 20000
batch_size = 120
display_step = 10
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 1 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
image = np.reshape(np.asarray(mnist.train.images[0]), (28,28))
#Process Images
cv_img = []
for img in glob.glob("./images/*.jpeg"):
n = cv2.cvtColor(cv2.resize(cv2.imread(img), (28,28)), cv2.COLOR_BGR2GRAY)
n = np.asarray(n)
n = np.reshape(n, n_input)
cv_img.append(n)
#Process File for angle, here we read the text line by line and make a list
with open("./images/allinfo.txt") as f:
content = f.readlines()
#Initialize arrays to unpack data file
angle = []
image_number = []
#Iterate through the text list and split each one by the comma separating the values.
#Turn the text into floats for use in the network
for i in range(len(content)):
content[i] = content[i][:-1].split(',')
image_number.append(float(content[i][1]))
angle.append(float(content[i][7]))
#Divide both angle and image number into test and train data sets
angle = np.atleast_2d(angle).T
##Encode angle into 10 classes (it ranges -1 to 1)
for i in range(len(angle)):
angle[i] = random.uniform(-1,1)
angle[i] = int((angle[i]+1.0)*n_classes/2.)
#Create a one-hot version of angle
angle_one_hot = np.zeros((len(angle),n_classes))
for c in range(len(angle)):
one_hot = np.zeros(n_classes)
one_hot[int(angle[c])] = 1
angle_one_hot[c] = one_hot
image_number = np.atleast_2d(image_number).T
test_data = np.hstack((image_number, angle))
#print test_data
train_percent = .8
train_number = int(len(test_data)*train_percent)
train_data = np.zeros((train_number, 2))
for i in range(train_number):
rand = random.randrange(0,len(test_data))
train_data[i] = test_data[rand]
test_data = np.delete(test_data, rand, 0)
test_data_images = test_data[:,0]
test_data_angles = test_data[:,1]
train_data_images, train_data_angles = train_data[:,0], train_data[:,1]
def gen_batch(angles, images, batch_size, image_array=cv_img):
indices = random.sample(xrange(0,len(images)), batch_size)
batch_images = []
batch_angles = []
# print angles
for i in range(batch_size):
batch_images.append(image_array[int(images[indices[i]])][:])
batch_angles.append(angles[indices[i]])
batch_images = np.asarray(batch_images)
batch_angles = np.asarray(batch_angles)
return batch_images, batch_angles
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32)
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
# Create model
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 28, 28, 1])
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Store layers weight & bias
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
#cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
cost = tf.reduce_mean(pred)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize((pred-y)**2)
# Evaluate model
correct_pred = y
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
print(y)
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = gen_batch(train_data_angles, train_data_images, batch_size)
#cv2.imshow('trash', batch_x[0,:].reshape((28,28)))
#cv2.waitKey(0)
#print(batch_y)
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc)
step += 1
print "Optimization Finished!"
# Calculate accuracy for all test images
img, lbls = gen_batch(test_data_angles, test_data_images, len(test_data_angles))
print "Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: img,
y: lbls,
keep_prob: 1.})
This doesn't work as a good nn (the data isn't normalized, the learning rate is two high, and the training accuracy is not yet programmed) but the image processing code works.
Hope this helps!
The CIFAR-10 is a subset of a much larger dataset. The images you need are scaled color images that have a height and width of 32 pixels with three color channels. One approach toward your goal would be to start by selecting 10 different labels from the CIFAR-100 dataset, saving your and running the existing code. For example, you may want to select the vehicles 1 and vehicles 2 superclasses. This would give you 6000 labeled images covering: bicycle, bus, motorcycle, pickup truck, train, lawn-mower, rocket, streetcar, tank, and tractor classes. You could then build a predictor of vehicle type - a pretty cool way to get more familiar with machine learning. :- )
Inside the cifar10.py file you can see the directories that are used for the training file downloaded from 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'. Without changing any code you can simply update these inflated training files with your data. Take a look in the /tmp/cifar10_data/cifar-10-batches-bin directory. E.g. The batches.meta.txt file contains the labels as described under the section 'Binary version' here: https://www.cs.toronto.edu/~kriz/cifar.html