I am working on a code to extract my AR(1)-GARCH(1) parameter, which I estimated using an AR(1)-GJR(1,1) model to individual matrices so that I can use them as variables in my calculations. As I have 16 time series variables, I combine the code with a loop in the following way:
for i=1:nIndices
AA_ARCH(:,i) = cell2mat(fit{i}.Variance.ARCH)';
end;
My problem is that for some variables is are no for AA_ARCH(:,i) the dimension is lower than nIndices. Naturally, when I try to export the estimates in the loop which specified the dimension of (:,i) and nIndices matlab reports a dimension mismatch. I would like to tell Matlab to replace the NaN with 0 instead of leaving the spot empty so that it is able to produce a (1,nIndices) matrix from AA_ARCH.
I thought of something like the this:
fit{i}.Variance.Leverage(isnan(fit{i}.Variance.Leverage))=0
but I wasn't able to combine this part with the previous code.
I would be very happy about any hints!
Best, Carolin
UPDATE:
Here is a fully a runnable version of my code which produces my problem. Notice that the code produces a dimension mismatch error because there is no ARCH and GARCH estimate in the fit.gjr(1,1) for time series 1. For these missing values I would like to have 0 as a placeholder in the extracted matrix.
returns = randn(2,750)';
T = size(returns,1);
nIndices = 2;
model = arima('AR', NaN, 'Variance', gjr(1,1));
residuals = NaN(T, nIndices);
variances = NaN(T, nIndices);
fit = cell(nIndices,1);
options = optimset('fmincon');
options = optimset(options, 'Display' , 'off', 'Diagnostics', 'off', ...
'Algorithm', 'sqp', 'TolCon' , 1e-7);
for i = 1:nIndices
fit{i} = estimate(model, returns(:,i), 'print', false, 'options', options);
[residuals(:,i), variances(:,i)] = infer(fit{i}, returns(:,i));
end
for i=1:nIndices
AA_beta(:,i) = cell2mat(fit{i}.AR)';
AA_GARCH(:,i) = cell2mat(fit{i}.Variance.GARCH)';
AA_ARCH(:,i) = cell2mat(fit{i}.Variance.ARCH)';
AA_Leverage(:,i) = cell2mat(fit{i}.Variance.Leverage)';
end;
I have some general things to say about the code, but first a solution to your problem:
You can put a simple if/else structure in your loop to handle the case of an empty array:
Side note: I initially tried something like this:
soz = @(A)isempty(A)*0+~isempty(A)*A;
as an inline replacement for the if/else, but it turns out that MATLAB doesn't handle[] + 0
the way I wanted (it results in[]
instead of0
; unlike other languages like JS).As for the other things I have to say:
i
,j
as loop indices, as this may cause compatibility problems in some cases where complex numbers are involved (e.g. if you loop index isi
then1*i
now refers to the loop index instead of to the square root of-1
).AA_beta
etc. then they could contain empty values, which you could later replace with whichever placeholder your heart desired using a combination ofcellfun
andisempty
. Bottom line: lint (aka the colorful square on the top right of the editor window) is your friend - don't ignore it :)