Compiling Data from 2 DoE

13 views Asked by At

I have results from two DoEs, the first one includes 4 factors:

| Variable | Levels         |
| -------- | -------------- |
| x1       | 0.9, 2.1, 2.9  |
| x2       | 1.64, 2.16     |
| x3       | 0.8, 1.15, 1.5 |
| x4       | 7, 7.5, 8      |
nruns = 18

After the experiment, we record the response: y. Through rsm, we conclude that maximum y is achieved by:

| Variable |      |
| -------- | ---- |
| x1       | 0.9  |
| x2       | 1.64 |
| x3       | 0.8  |
| x4       | 8    |

We intend to explore the levels of x3 and x4 beyond the ones we already tried (in hope to increase y even more than the current maximum). So a second DoE is made:

| Variable | Levels         |
| -------- | -------------- |
| x1       | 0.9            |
| x2       | 1.64           |
| x3       | 0, 0.5, 1, 1.5 |
| x4       | 8, 8.5, 9, 9.5 |
nruns = 16

Is it wise to compile data from both DoE and create a new y model?

I have tried modeling the first DoE result:

            Estimate Std. Error t value  Pr(>|t|)    
(Intercept)  53.6125     3.3328 16.0865 1.782e-08 ***
x1           -8.1076     2.4799 -3.2693 0.0084402 ** 
x2          -15.5089     2.2637 -6.8512 4.452e-05 ***
x3          -18.9195     2.3624 -8.0085 1.167e-05 ***
x4           12.9776     2.4584  5.2789 0.0003582 ***
x1:x3         6.1652     3.0419  2.0268 0.0701846 .  
x3:x4       -13.1467     3.5887 -3.6634 0.0043646 ** 
x3^2         -8.3503     4.0768 -2.0483 0.0677031 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared:  0.9373,    Adjusted R-squared:  0.8934 
F-statistic: 21.35 on 7 and 10 DF,  p-value: 2.989e-05

Analysis of Variance Table

Response: y
                   Df Sum Sq Mean Sq F value    Pr(>F)
FO(x1, x2, x3, x4)  4 8250.9 2062.72 31.0278 1.297e-05
TWI(x1, x3)         1  511.2  511.22  7.6898  0.019684
TWI(x3, x4)         1  892.2  892.18 13.4203  0.004365
PQ(x3)              1  278.9  278.91  4.1954  0.067703
Residuals          10  664.8   66.48                  
Lack of fit        10  664.8   66.48     NaN       NaN
Pure error          0    0.0     NaN                  

Stationary point of response surface:
       x1        x2        x3        x4 
 1.064145  0.000000  1.046257 -2.269172 

Stationary point in original units:
        x1               x2               x3               x4
        2.964145         1.900000         1.516190         6.365414 

Eigenanalysis:
eigen() decomposition
$values
[1]   4.199982   0.000000   0.000000 -12.550315

$vectors
         [,1]         [,2] [,3]       [,4]
x1  0.3675223 9.053867e-01    0  0.2126082
x2  0.0000000 0.000000e+00    1  0.0000000
x3  0.5007402 3.442183e-16    0 -0.8655976
x4 -0.7837006 4.245879e-01    0 -0.4533635

and tried modeling the compiled data:

dfcoded <- coded.data(df2,
                      x1 ~ (2*(x1 - 0.9)/2) - 1,
                      x2 ~ (2*(x2 - 1.64)/0.52) - 1,
                      x3 ~ (2*(x3 - 0)/1.5) - 1,
                      x4 ~ (2*(x4 - 7)/2.5) - 1)

m <- rsm(Binding ~
           FO(x1, x2, x3, x4) +
           TWI(x1, x4) +
           TWI(x2, x3) + TWI(x2, x4) +
           PQ(x3),
         data = dfcoded)
summary(m) # best


            Estimate Std. Error t value  Pr(>|t|)    
(Intercept)  66.3728     4.8140 13.7874 3.466e-13 ***
x1            6.9777     5.1197  1.3629  0.185060    
x2           10.6011     5.0716  2.0903  0.046920 *  
x3          -12.7635     6.7357 -1.8949  0.069726 .  
x4           11.0079     7.5260  1.4627  0.156021    
x1:x4        19.1074     7.4883  2.5516  0.017217 *  
x2:x3       -22.7937     6.4498 -3.5340  0.001621 ** 
x2:x4        15.3252     7.7275  1.9832  0.058431 .  
x3^2        -12.8778     5.2347 -2.4601  0.021152 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared:  0.8106,    Adjusted R-squared:   0.75 
F-statistic: 13.37 on 8 and 25 DF,  p-value: 2.634e-07

Analysis of Variance Table

Response: y
                   Df Sum Sq Mean Sq F value    Pr(>F)
FO(x1, x2, x3, x4)  4 2976.7   744.2  5.9408  0.001674
TWI(x1, x4)         1 4231.7  4231.7 33.7825 4.638e-06
TWI(x2, x3)         1 4978.5  4978.5 39.7437 1.347e-06
TWI(x2, x4)         1  456.8   456.8  3.6463  0.067734
PQ(x3)              1  758.1   758.1  6.0519  0.021152
Residuals          25 3131.6   125.3                  
Lack of fit        24 2986.4   124.4  0.8569  0.709247
Pure error          1  145.2   145.2                  

Stationary point of response surface:
         x1          x2          x3          x4 
 0.07199339 -0.80804612  0.21955856 -0.36518518 

Stationary point in original units:
              x1               x2               x3               x4 
       1.9719934        1.6899080        0.9146689        7.7935185 

Eigenanalysis:
eigen() decomposition
$values
[1]  13.544086   4.221524 -10.086293 -20.557069

$vectors
         [,1]       [,2]        [,3]       [,4]
x1 -0.4522197 -0.6143887  0.63559781 -0.1184878
x2 -0.5693598  0.6164495  0.09081844 -0.5362568
x3  0.2455887 -0.4108699 -0.37078955 -0.7958563
x4 -0.6411029 -0.2714821 -0.67103096  0.2549549
0

There are 0 answers