Comparing standardized factor loadings between non nested models

209 views Asked by At

For my master thesis I am comparing Models using SEM (lavaan). I conducted an online survey to validate new scales to assess ict stress factors and resources. Since the questionnaire was quite long and I suspected there might be problems with response styles I used the method of Weijters et al. (2008) to model different response tendencies (e.g. Aquiescence, ARS).

Part of examining construct validity involves analyizing the indicator loadings of the observed variables on the latent construct in the measurement models (MacKenzie et al., 2011) .

I want to check if these factor loadings are different, if I include ARS in the model. What I noticed was, that the standard errors of the factor loadings are twice or thrice as high if I include ARS. Some factor loadings get higher in this model and all load significantly on the latent construct. What I am not certain of, is if the change in the factor loadings is due to the higher standard errors (what I expect) or due to ARS.

How can I compare factor loadings between models that are not nested? Comparing Modelfits does not help me, since this does not inform me if the single parameters differ. (the Models that include ARS almost always fit better, even though the Effect of ARS on the indicators is not significant)

I cant include the data file, but I extracted some of the code and the output of lavaan. The question concerns the changes in the factor loadings (std.all) of the indicators ICTPAss_day1 - ICTPAss_day3

# Latent Variables:
#                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
# ICTPAss =~                                                            
# ICTPAss_day1      0.817    0.061   13.434    0.000    0.817    0.774
# ICTPAss_day3      0.833    0.058   14.410    0.000    0.833    0.779
# ICTPAss_day4      0.732    0.057   12.811    0.000    0.732    0.641

and

# Latent Variables:
#                 Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
# ICTPAss =~                                                            
# ICTPAss_d1        0.881    0.242    3.642    0.000    0.881    0.832
# ICTPAss_d3        0.875    0.239    3.654    0.000    0.875    0.821
# ICTPAss_d4        0.749    0.226    3.319    0.001    0.749    0.656

whole Code:

model_ictpass <- '
  # measurement model
  
     ICTPAss   =~ ICTPAss_day1 + ICTPAss_day3 + ICTPAss_day4 
    '

fit_ictpass <- lavaan::cfa(model_ictpass, my_data_validity, estimator = "MLM", std.lv = T)
summary(fit_ictpass, fit.measures=T, standardized=T, rsquare = T)


# lavaan 0.6-8 ended normally after 13 iterations
# 
# Estimator                                         ML
# Optimization method                           NLMINB
# Number of model parameters                         6
# 
# Number of observations                           356
# 
# Model Test User Model:
#   Standard      Robust
# Test Statistic                                 0.000       0.000
# Degrees of freedom                                 0           0
# 
# Model Test Baseline Model:
#   
# Test statistic                               292.653     230.441
# Degrees of freedom                                 3           3
# P-value                                        0.000       0.000
# Scaling correction factor                                  1.270
# 
# User Model versus Baseline Model:
#   
# Comparative Fit Index (CFI)                    1.000       1.000
# Tucker-Lewis Index (TLI)                       1.000       1.000
# 
# Robust Comparative Fit Index (CFI)                            NA
# Robust Tucker-Lewis Index (TLI)                               NA
# 
# Loglikelihood and Information Criteria:
#   
# Loglikelihood user model (H0)              -1459.113   -1459.113
# Loglikelihood unrestricted model (H1)      -1459.113   -1459.113
# 
# Akaike (AIC)                                2930.226    2930.226
# Bayesian (BIC)                              2953.475    2953.475
# Sample-size adjusted Bayesian (BIC)         2934.440    2934.440
# 
# Root Mean Square Error of Approximation:
#   
# RMSEA                                          0.000       0.000
# 90 Percent confidence interval - lower         0.000       0.000
# 90 Percent confidence interval - upper         0.000       0.000
# P-value RMSEA <= 0.05                             NA          NA
# 
# Robust RMSEA                                               0.000
# 90 Percent confidence interval - lower                     0.000
# 90 Percent confidence interval - upper                     0.000
# 
# Standardized Root Mean Square Residual:
#   
# SRMR                                           0.000       0.000
# 
# Parameter Estimates:
#   
# Standard errors                           Robust.sem
# Information                                 Expected
# Information saturated (h1) model          Structured
# 
# Latent Variables:
#                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
# ICTPAss =~                                                            
# ICTPAss_day1      0.817    0.061   13.434    0.000    0.817    0.774
# ICTPAss_day3      0.833    0.058   14.410    0.000    0.833    0.779
# ICTPAss_day4      0.732    0.057   12.811    0.000    0.732    0.641
# 
# Variances:
#                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
# .ICTPAss_day1      0.447    0.074    6.079    0.000    0.447    0.401
# .ICTPAss_day3      0.449    0.072    6.194    0.000    0.449    0.393
# .ICTPAss_day4      0.767    0.075   10.246    0.000    0.767    0.589
#  ICTPAss           1.000                               1.000    1.000
# 
# R-Square:
#                 Estimate
# ICTPAss_day1      0.599
# ICTPAss_day3      0.607
# ICTPAss_day4      0.411
# 



####6.3.0.1 Messmodell ARS

model_ictpass_ars <- '
  # measurement model
  
    ICTPAss   =~ ICTPAss_day1 + ICTPAss_day3 + ICTPAss_day4  
   
    ARS =~ a*ARS_a + a*ARS_b + a*ARS_c
    
  # time-invariant autoregressive effect
    ARS_b ~ e*ARS_a
    ARS_c ~ e*ARS_b
    
  # Influence of ARS
    ICTPAss_day1 ~ l*ARS
    ICTPAss_day3 ~ l*ARS
    ICTPAss_day4 ~ l*ARS
  
    '

fit_ictpass_ars <- lavaan::cfa(model_ictpass_ars, my_data_validity, estimator = "MLM", std.lv = T)
summary(fit_ictpass_ars, fit.measures=T, standardized=T, rsquare = T)

# lavaan 0.6-8 ended normally after 36 iterations
# 
# Estimator                                         ML
# Optimization method                           NLMINB
# Number of model parameters                        18
# Number of equality constraints                     5
# 
# Number of observations                           356
# 
# Model Test User Model:
# Standard      Robust
# Test Statistic                                 8.158       7.800
# Degrees of freedom                                 8           8
# P-value (Chi-square)                           0.418       0.453
# Scaling correction factor                                  1.046
# Satorra-Bentler correction                                 
# 
# Model Test Baseline Model:
#   
# Test statistic                               379.734     341.671
# Degrees of freedom                                15          15
# P-value                                        0.000       0.000
# Scaling correction factor                                  1.111
# 
# User Model versus Baseline Model:
#   
# Comparative Fit Index (CFI)                    1.000       1.000
# Tucker-Lewis Index (TLI)                       0.999       1.001
# 
# Robust Comparative Fit Index (CFI)                         1.000
# Robust Tucker-Lewis Index (TLI)                            1.001
# 
# Loglikelihood and Information Criteria:
#   
# Loglikelihood user model (H0)              -2035.784   -2035.784
# Loglikelihood unrestricted model (H1)      -2031.706   -2031.706
# 
# Akaike (AIC)                                4097.569    4097.569
# Bayesian (BIC)                              4147.943    4147.943
# Sample-size adjusted Bayesian (BIC)         4106.701    4106.701
# 
# Root Mean Square Error of Approximation:
#   
# RMSEA                                          0.007       0.000
# 90 Percent confidence interval - lower         0.000       0.000
# 90 Percent confidence interval - upper         0.063       0.060
# P-value RMSEA <= 0.05                          0.863       0.886
# 
# Robust RMSEA                                               0.000
# 90 Percent confidence interval - lower                     0.000
# 90 Percent confidence interval - upper                     0.063
# 
# Standardized Root Mean Square Residual:
#   
# SRMR                                           0.029       0.029
# 
# Parameter Estimates:
#   
# Standard errors                           Robust.sem
# Information                                 Expected
# Information saturated (h1) model          Structured
# 
# Latent Variables:
#                 Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
# ICTPAss =~                                                            
# ICTPAss_d1        0.881    0.242    3.642    0.000    0.881    0.832
# ICTPAss_d3        0.875    0.239    3.654    0.000    0.875    0.821
# ICTPAss_d4        0.749    0.226    3.319    0.001    0.749    0.656
# ARS =~                                                                
# ARS_a      (a)    0.207    0.024    8.679    0.000    0.207    0.554
# ARS_b      (a)    0.207    0.024    8.679    0.000    0.207    0.433
# ARS_c      (a)    0.207    0.024    8.679    0.000    0.207    0.465
# 
# Regressions:
#                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
# ARS_b ~                                                               
#   ARS_a      (e)    0.028    0.059    0.478    0.633    0.028    0.022
# ARS_c ~                                                               
#   ARS_b      (e)    0.028    0.059    0.478    0.633    0.028    0.030
# ICTPAss_day1 ~                                                        
#   ARS        (l)    0.642    0.492    1.305    0.192    0.642    0.607
# ICTPAss_day3 ~                                                        
#   ARS        (l)    0.642    0.492    1.305    0.192    0.642    0.603
# ICTPAss_day4 ~                                                        
#   ARS        (l)    0.642    0.492    1.305    0.192    0.642    0.563
# 
# Covariances:
#                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
# ICTPAss ~~                                                            
#   ARS              -0.446    0.475   -0.940    0.347   -0.446   -0.446
# 
# Variances:
#                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
# .ICTPAss_day1      0.438    0.073    6.023    0.000    0.438    0.391
# .ICTPAss_day3      0.458    0.069    6.620    0.000    0.458    0.404
# .ICTPAss_day4      0.759    0.071   10.666    0.000    0.759    0.582
# .ARS_a             0.097    0.011    8.690    0.000    0.097    0.693
# .ARS_b             0.183    0.016   11.605    0.000    0.183    0.801
# .ARS_c             0.154    0.015    9.923    0.000    0.154    0.771
# ICTPAss           1.000                               1.000    1.000
# ARS               1.000                               1.000    1.000
# 
# R-Square:
#                 Estimate
# ICTPAss_day1      0.609
# ICTPAss_day3      0.596
# ICTPAss_day4      0.418
# ARS_a             0.307
# ARS_b             0.199
# ARS_c             0.229


Literature:

MacKenzie, S. B., Podsakoff, P. M. & Podsakoff, N. P. (2011). Construct Measurement and Validation Procedures in MIS and Behavioral Research: Integrating New and Existing Techniques. MIS Quarterly, 35(2), 293. https://doi.org/10.2307/23044045

Weijters, B., Schillewaert, N. & Geuens, M. (2008). Assessing response styles across modes of data collection. Journal of the Academy of Marketing Science, 36(3), 409–422. https://doi.org/10.1007/s11747-007-0077-6

Weijters, B., Geuens, M. & Schillewaert, N. (2010a). The Individual Consistency of Acquiescence and Extreme Response Style in Self-Report Questionnaires. Applied Psychological Measurement, 34(2), 105–121. https://doi.org/10.1177/0146621609338593

Thanks for any answer and greetings :)

0

There are 0 answers