Compare different columns in separate rows in R

167 views Asked by At

I would like to check that an individual does not have any gaps in their eligibility status. I define a gap as a date_of_claim that occurs 30 days after the last elig_end_date. therefore, what I would like to do is check that each date_of_claim is no longer than the elig_end_date +30days in the row immediately preceeding. Ideally I would like an indicator that says 0 for no gap and 1 if there is a gap per person and where the gap occurs. Here is a sample df with the solution built in as 'gaps'.

 names date_of_claim elig_end_date obs gaps
1    tom    2010-01-01    2010-07-01   1    NA
2    tom    2010-05-04    2010-07-01   1    0
3    tom    2010-06-01    2014-01-01   2    0
4    tom    2010-10-10    2014-01-01   2    0
5   mary    2010-03-01    2014-06-14   1    NA
6   mary    2010-05-01    2014-06-14   1    0
7   mary    2010-08-01    2014-06-14   1    0
8   mary    2010-11-01    2014-06-14   1    0
9   mary    2011-01-01    2014-06-14   1    0
10  john    2010-03-27    2011-03-01   1    NA
11  john    2010-07-01    2011-03-01   1    0
12  john    2010-11-01    2011-03-01   1    0
13  john    2011-02-01    2011-03-01   1    0
14   sue    2010-02-01    2010-04-30   1    NA
15   sue    2010-02-27    2010-04-30   1    0
16   sue    2010-03-13    2010-05-31   2    0
17   sue    2010-04-27    2010-06-30   3    0
18   sue    2010-04-27    2010-06-30   3    0
19   sue    2010-05-06    2010-08-31   4    0
20   sue    2010-06-08    2010-09-30   5    0
21  mike    2010-05-01    2010-07-30   1    NA
22  mike    2010-06-01    2010-07-30   1    0
23  mike    2010-11-12    2011-07-30   2    1

I have found this post quite useful How can I compare a value in a column to the previous one using R?, but feel that I cant use a loop as my df has 4 million rows, and I have had a lot of difficulty trying to run a loop on it already.

to this end, i think the code i need is something like this:

df$gaps<-ifelse(df$date_of_claim>=df$elig_end_date+30,1,0)  ##this doesn't use the preceeding row.

I've made a clumsy attempt using this:

df$gaps<-df$date_of_claim>=df$elig_end_date[-1,]

but I get an error to say i have an incorrect number of dimensions.

all help greatly appreciated! thank you.

1

There are 1 answers

0
Roland On BEST ANSWER

With four million observations I would use data.table:

DF <- read.table(text="names date_of_claim elig_end_date obs gaps
1    tom    2010-01-01    2010-07-01   1    NA
2    tom    2010-05-04    2010-07-01   1    0
3    tom    2010-06-01    2014-01-01   2    0
4    tom    2010-10-10    2014-01-01   2    0
5   mary    2010-03-01    2014-06-14   1    NA
6   mary    2010-05-01    2014-06-14   1    0
7   mary    2010-08-01    2014-06-14   1    0
8   mary    2010-11-01    2014-06-14   1    0
9   mary    2011-01-01    2014-06-14   1    0
10  john    2010-03-27    2011-03-01   1    NA
11  john    2010-07-01    2011-03-01   1    0
12  john    2010-11-01    2011-03-01   1    0
13  john    2011-02-01    2011-03-01   1    0
14   sue    2010-02-01    2010-04-30   1    NA
15   sue    2010-02-27    2010-04-30   1    0
16   sue    2010-03-13    2010-05-31   2    0
17   sue    2010-04-27    2010-06-30   3    0
18   sue    2010-04-27    2010-06-30   3    0
19   sue    2010-05-06    2010-08-31   4    0
20   sue    2010-06-08    2010-09-30   5    0
21  mike    2010-05-01    2010-07-30   1    NA
22  mike    2010-06-01    2010-07-30   1    0
23  mike    2010-11-12    2011-07-30   2    1", header=TRUE)

library(data.table)
DT <- data.table(DF)

DT[, c("date_of_claim", "elig_end_date") := list(as.Date(date_of_claim), as.Date(elig_end_date))]

DT[, gaps2:= c(NA, date_of_claim[-1] > head(elig_end_date, -1)+30), by=names]

#    names date_of_claim elig_end_date obs gaps gaps2
# 1:   tom    2010-01-01    2010-07-01   1   NA    NA
# 2:   tom    2010-05-04    2010-07-01   1    0 FALSE
# 3:   tom    2010-06-01    2014-01-01   2    0 FALSE
# 4:   tom    2010-10-10    2014-01-01   2    0 FALSE
# 5:  mary    2010-03-01    2014-06-14   1   NA    NA
# 6:  mary    2010-05-01    2014-06-14   1    0 FALSE
# 7:  mary    2010-08-01    2014-06-14   1    0 FALSE
# 8:  mary    2010-11-01    2014-06-14   1    0 FALSE
# 9:  mary    2011-01-01    2014-06-14   1    0 FALSE
# 10:  john    2010-03-27    2011-03-01   1   NA    NA
# 11:  john    2010-07-01    2011-03-01   1    0 FALSE
# 12:  john    2010-11-01    2011-03-01   1    0 FALSE
# 13:  john    2011-02-01    2011-03-01   1    0 FALSE
# 14:   sue    2010-02-01    2010-04-30   1   NA    NA
# 15:   sue    2010-02-27    2010-04-30   1    0 FALSE
# 16:   sue    2010-03-13    2010-05-31   2    0 FALSE
# 17:   sue    2010-04-27    2010-06-30   3    0 FALSE
# 18:   sue    2010-04-27    2010-06-30   3    0 FALSE
# 19:   sue    2010-05-06    2010-08-31   4    0 FALSE
# 20:   sue    2010-06-08    2010-09-30   5    0 FALSE
# 21:  mike    2010-05-01    2010-07-30   1   NA    NA
# 22:  mike    2010-06-01    2010-07-30   1    0 FALSE
# 23:  mike    2010-11-12    2011-07-30   2    1  TRUE
#     names date_of_claim elig_end_date obs gaps gaps2