I am currently using embedded python binding for neo4j. I do not have any issues currently since my graph is very small (sparse and upto 100 nodes). The algorithm I am developing involves quite a lot of traversals on the graph, more specifically DFS on the graph in general as well as on different subgraphs. In the future I intend to run the algorithm on large graphs (supposedly sparse and with millions of nodes).
Having read different threads related to the performance of python/neo4j bindings here, here, I wonder whether I should already switch to some REST API client for Python (like bulbflow, py2neo, neo4jrestclient) until I am too far to change all code.
Unfortunately, I did not find any comprehensive source of information to compare different approaches.
Could anyone provide some further insight into this issue? Which criteria should I take into account when choosing one of the options?
Not really sure, I am not an expert, but I think it also depends on your Django expectations, and how much of a framework you need. Py2neo is very pragmatic and slim, Bulbflow seems to build up a whole mapping stack etc, and neo4jrestclient is concentrating on Django (that may be wrong)?