I would like to use Huggingface Transformers to implement a chatbot. Currently, I have the code shown below. The transformer model already takes into account the history of past user input.
Is there something else (additional code) I have to take into account for building the chatbot?
Second, how can I modify my code to run with TensorFlow instead of PyTorch?
Later on, I also plan to fine-tune the model on other data. I also plan to test different models such as BlenderBot and GPT2. I think to test this different models it should be as easy as replacing the corresponding model in AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
and AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
for step in range(5):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# pretty print last ouput tokens from bot
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
Here is an example of using the
DialoGPT
model with Tensorflow:If you want to compare different chatbots, you might want to adapt their decoder parameters, because they are not always identical. For example, using
BlenderBot
and amax_length
of 50 you get this kind of response with the current code:In general, you should ask yourself which special characters are important for a chatbot (depending on your domain) and which characters should / can be omitted?
You should also experiment with different decoding methods such as greedy search, beam search, random sampling, top-k sampling, and nucleus sampling and find out what works best for your use case. For more information on this topic check out this post