This is my Julia code to simulate data and sample from a Turing.jl model:
using LinearAlgebra, Distributions, StatsBase
using Turing, FillArrays, DynamicHMC, LabelledArrays
using NNlib, GLM
using CSV, DataFrames
function generate_hmnl_data(R::Int=100, S::Int=30, C::Int=3,
Theta::Array{Float64, 2}=ones(2, 4),
Sigma::Array{Float64, 2}=Matrix(Diagonal(fill(0.1, 4))))
K = size(Theta, 2)
G = size(Theta, 1)
Y = Array{Int64}(undef, R, S)
X = randn(R, S, C, K)
Z = Array{Float64}(undef, G, R)
Z[1, :] .= 1
if G > 1
Z[2:G, :] = randn(R * (G-1))
end
Beta = Array{Float64}(undef, K, R)
for r in 1:R
println(Z[:, r])
println(Theta)
Beta[:, r] = rand(MvNormal(Theta' * Z[:, r], Sigma))
for s in 1:S
Y[r, s] = sample(1:C, Weights(exp.(X[r, s, :, :] * Beta[:, r])))
end
end
return (R=R, S=S, C=C, K=K, G=G, Y=Y, X=X, Z=Z,
beta_true=Beta, Theta_true=Theta, Sigma_true=Sigma)
end
d1 = generate_hmnl_data()
@model function hmnl(G::Int, Y::Matrix{Int64}, X::Array{Float64}, Z::Matrix{Float64})
R, S, C, K = size(X)
Theta = zeros(K, G)
for k in 1:K
for g in 1:G
Theta[k, g] ~ Normal(0, 10)
end
end
Sigma ~ InverseWishart(K, diagm(ones(K)))
Beta = zeros(K, R)
println(eltype(Beta))
for r in 1:R
Beta[:, r] ~ MvNormal(Theta * Z[:, r], Sigma)
println(typeof(Beta[:, r]))
for s in 1:S
beta_r = copy(Beta[:, r])
beta_r = convert(Vector{Float64}, beta_r)
ut_rs = X[r, s, :, :] * beta_r
v = softmax(ut_rs)
Y[r, s] ~ Categorical(v)
end
end
end
sampler = HMC(.05, 10)
test_mod = hmnl(d1.G, d1.Y, d1.X, d1.Z)
chains = sample(test_mod, sampler, 1_000)
I get this error when I try to sample from the model: MethodError: no method matching float(::Type{Any})
. The sampling statement Beta[:, r] ~ MvNormal(Theta * Z[:, r], Sigma)
changes Beta[:, r]
to type Vector{Any}
.
I have tried
beta_r = copy(Beta[:, r])
beta_r = convert(Vector{Float64}, beta_r)
ut_rs = X[r, s, :, :] * beta_r
But then I get this error instead:
ERROR: TypeError: in typeassert, expected Float64, got a value of type ForwardDiff.Dual{Nothing, Float64, 12}
So it's messing with Turing AD somehow. I'm new to Turing and can't understand the right way to do this.
I'm reposting an answer from Tor Fjelde (https://github.com/torfjelde) which I received on Github. For Turing to work you need to ensure types in your model can be inferred. I wasn't doing that. https://turing.ml/v0.22/docs/using-turing/performancetips#ensure-that-types-in-your-model-can-be-inferred
This function worked: