I'm newbie in cepstrum analysis. So that's the question.
I have signal with the length 4096 and sample rate 8000 Hz. I make FFT and get the array with the length 4096*2 (2*i position is for cosinus coeff, 2*i+1 position is for sinus coeff). Frequency step is (sampleRate/signalLength == 8000/4096). So, I can calculate frequency at i position this way: i*sampleRate/signalLength.
Then, I make the cepstrum transformation. I can't understand how to find quefrency step and how to find frequency for given quefrency.
The bin number of an FFT result is inversely proportional to the length of the period of a sinusoidal component in the time domain. The bin number of a quefrency result is also inversely proportional to the distance between partials in a series of overtones in the frequency domain (this distance often the same as a root or fundamental pitch). Thus quefrency bin number would be proportional to period or repeat lag (autocorrelation peak) of a harmonically rich periodic signal in the time domain.