I have some actual data that I am afraid is somewhat nasty.
It's essentially a Positive Negative Binomial distribution (without any zero counts). However, there are some outliers that seem to cause some bad calculations to occur (maybe underflow or NaNs?) The first 8 or so entries are reasonable, but I'm guessing the last few are causing some problems with the fitting.
Here's the data:
> df
counts t
1 1968 1
2 217 2
3 55 3
4 26 4
5 11 5
6 5 6
7 8 7
8 3 8
9 1 10
10 1 11
11 1 12
12 1 13
13 1 15
14 1 18
15 1 26
16 1 59
This command runs for a while and then spits out the error message
> vglm(counts ~ t, data=df, family = posnegbinomial)
Error in if (take.half.step) { : missing value where TRUE/FALSE needed
BUT, if I rerun this cutting off the outliers, I get a solution for posnegbinomial
> vglm(counts ~ t, data=df[1:9,], family = posnegbinomial)
Call:
vglm(formula = counts ~ t, family = posnegbinomial, data = df[1:9,])
Coefficients:
(Intercept):1 (Intercept):2 t
7.7487404 0.7983811 -0.9427189
Degrees of Freedom: 18 Total; 15 Residual
Log-likelihood: -36.21064
If I try the family pospoisson (Positive Poisson: no zero values), I get a similar error "argument is not interpretable as logical".
I do notice that there are a number of similar questions in Stackoverflow about missing values where TRUE/FALSE is needed, but with other R packages. This indicates to me that perhaps the package writers need to better anticipate calculations might fail.
I think your proximal problem is that the predicted means for the negative binomial for your extreme values are so close to zero that they are underflowing to zero, in a way that was not anticipated/protected against by the package authors. (One thing to realize about nonlinear optimization/fitting is that it is always possible to break a fitting method by giving it extreme data ...)
I couldn't get this to work in
VGAM
, but I'll offer a couple of other suggestions.And eyeballing the data to get an initial estimate of parameter values (at least for the mean model):
I thought I might be able to get
vglm()
to work by setting starting values, but that didn't actually pan out, even when I have fairly good values from other platforms (see below).glmmADMB
The
glmmADMB
package can handle positive NB, viafamily="truncnbinom"
:(there are some warning messages ...)
bbmle::mle2()
This requires a little bit more work: it failed with the standard model, but works if I set a floor on the predicted mean ...
Again warning messages.
Compare
glmmADMB
,mle2
, simple truncatedlm
fit ...This is in principle also possible with
glmmTMB
, but it runs into the same kinds of problems asvglm()
...